File size: 6,830 Bytes
26277ae
 
247e955
26277ae
 
 
 
 
 
 
247e955
 
26277ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247e955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26277ae
 
 
 
 
 
 
 
 
 
 
 
 
247e955
 
 
 
 
26277ae
 
 
 
 
 
 
 
 
 
247e955
 
 
 
26277ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247e955
 
 
26277ae
 
 
 
247e955
26277ae
247e955
26277ae
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import gradio as gr
import edge_tts
from pathlib import Path
import inference.infer_tool as infer_tool
import utils
from inference.infer_tool import Svc
import logging
import webbrowser
import argparse
import asyncio
import librosa
import soundfile
import gradio.processing_utils as gr_processing_utils
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)

limitation = os.getenv("SYSTEM") == "spaces"  # limit audio length in huggingface spaces

audio_postprocess_ori = gr.Audio.postprocess

def audio_postprocess(self, y):
    data = audio_postprocess_ori(self, y)
    if data is None:
        return None
    return gr_processing_utils.encode_url_or_file_to_base64(data["name"])


gr.Audio.postprocess = audio_postprocess
def create_vc_fn(model, sid):
    def vc_fn(input_audio, vc_transform, auto_f0, slice_db, noise_scale, pad_seconds, tts_text, tts_voice, tts_mode):
        if tts_mode:
            if len(tts_text) > 100 and limitation:
                return "Text is too long", None
            if tts_text is None or tts_voice is None:
                return "You need to enter text and select a voice", None
            asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
            audio, sr = librosa.load("tts.mp3")
            soundfile.write("tts.wav", audio, 24000, format="wav")
            wav_path = "tts.wav"
        else:
            if input_audio is None:
                return "You need to select an audio", None
            raw_audio_path = f"raw/{input_audio}"
            if "." not in raw_audio_path:
                raw_audio_path += ".wav"
            infer_tool.format_wav(raw_audio_path)
            wav_path = Path(raw_audio_path).with_suffix('.wav')
        _audio = model.slice_inference(
            wav_path, sid, vc_transform, slice_db,
            cluster_infer_ratio=0,
            auto_predict_f0=auto_f0,
            noice_scale=noise_scale,
            pad_seconds=pad_seconds)
        model.clear_empty()
        return "Success", (44100, _audio)
    return vc_fn

def refresh_raw_wav():
    return gr.Dropdown.update(choices=os.listdir("raw"))

def change_to_tts_mode(tts_mode):
    if tts_mode:
        return gr.Audio.update(visible=False), gr.Button.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
    else:
        return gr.Audio.update(visible=True), gr.Button.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--api', action="store_true", default=False)
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    parser.add_argument("--colab", action="store_true", default=False, help="share gradio app")
    args = parser.parse_args()
    hubert_model = utils.get_hubert_model().to(args.device)
    models = []
    voices = []
    tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
    for r in tts_voice_list:
        voices.append(f"{r['ShortName']}-{r['Gender']}")
    raw = os.listdir("raw")
    for f in os.listdir("models"):
        name = f
        model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device, hubert_model=hubert_model)
        cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
        models.append((name, cover, create_vc_fn(model, name)))
    with gr.Blocks() as app:
        gr.Markdown(
            "# <center> Sovits Models\n"
            "## <center> The input audio should be clean and pure voice without background music.\n"
            "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.Sovits-Umamusume)\n\n"
            "[Open In Colab](https://colab.research.google.com/drive/1wfsBbMzmtLflOJeqc5ZnJiLY7L239hJW?usp=share_link)"
            " without queue and length limitation.\n\n"
            "[Original Repo](https://github.com/svc-develop-team/so-vits-svc)\n\n"
            "Other models:\n"
            "[rudolf](https://huggingface.co/spaces/sayashi/sovits-rudolf)\n"
            "[teio](https://huggingface.co/spaces/sayashi/sovits-teio)\n"
            "[goldship](https://huggingface.co/spaces/sayashi/sovits-goldship)\n"
            "[tannhauser](https://huggingface.co/spaces/sayashi/sovits-tannhauser)\n"

        )
        with gr.Tabs():
            for (name, cover, vc_fn) in models:
                with gr.TabItem(name):
                    with gr.Row():
                        gr.Markdown(
                            '<div align="center">'
                            f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
                            '</div>'
                        )
                    with gr.Row():
                        with gr.Column():
                            with gr.Row():
                                vc_input = gr.Dropdown(label="Input audio", choices=raw)
                                vc_refresh = gr.Button("🔁", variant="primary")
                            vc_transform = gr.Number(label="vc_transform", value=0)
                            slice_db = gr.Number(label="slice_db", value=-40)
                            noise_scale = gr.Number(label="noise_scale", value=0.4)
                            pad_seconds = gr.Number(label="pad_seconds", value=0.5)
                            auto_f0 = gr.Checkbox(label="auto_f0", value=False)
                            tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
                            tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
                            tts_voice = gr.Dropdown(choices=voices, visible=False)
                            vc_submit = gr.Button("Generate", variant="primary")
                        with gr.Column():
                            vc_output1 = gr.Textbox(label="Output Message")
                            vc_output2 = gr.Audio(label="Output Audio")
                vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0, slice_db,  noise_scale, pad_seconds, tts_text, tts_voice, tts_mode], [vc_output1, vc_output2])
                vc_refresh.click(refresh_raw_wav, [], [vc_input])
                tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, vc_refresh, tts_text, tts_voice])
        if args.colab:
            webbrowser.open("http://127.0.0.1:7860")
        app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)