File size: 4,770 Bytes
6086416
 
 
 
4b5c6f0
6086416
 
11ee98a
200bcf6
c2dde5f
6086416
 
 
 
 
ad0b2b8
c2dde5f
 
 
 
 
 
 
 
 
 
 
6086416
 
 
 
 
 
c17721a
 
6086416
 
 
c17721a
 
 
4b5c6f0
6086416
 
 
 
11ee98a
 
 
 
 
 
4b5c6f0
6086416
 
 
4b5c6f0
6086416
 
 
 
c17721a
6086416
1587f86
 
c17721a
814e97c
 
 
 
 
 
 
6086416
 
 
 
 
 
 
 
 
 
 
 
814e97c
6086416
 
 
 
 
 
 
11ee98a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import gradio as gr
import librosa
import numpy as np
import utils
from inference.infer_tool import Svc
import logging
import webbrowser
import argparse
import gradio.processing_utils as gr_processing_utils
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)

limitation = os.getenv("SYSTEM") == "spaces"  # limit audio length in huggingface spaces

audio_postprocess_ori = gr.Audio.postprocess

def audio_postprocess(self, y):
    data = audio_postprocess_ori(self, y)
    if data is None:
        return None
    return gr_processing_utils.encode_url_or_file_to_base64(data["name"])


gr.Audio.postprocess = audio_postprocess
def create_vc_fn(model, sid):
    def vc_fn(input_audio, vc_transform, auto_f0):
        if input_audio is None:
            return "You need to upload an audio", None
        sampling_rate, audio = input_audio
        duration = audio.shape[0] / sampling_rate
        if duration > 30 and limitation:
            return "Please upload an audio file that is less than 30 seconds. If you need to generate a longer audio file, please use Colab.", None
        audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
        if len(audio.shape) > 1:
            audio = librosa.to_mono(audio.transpose(1, 0))
        if sampling_rate != 44100:
            audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=44100)
        out_audio, out_sr = model.infer(sid, vc_transform, audio, auto_predict_f0=auto_f0)
        model.clear_empty()
        return "Success", (44100, out_audio.cpu().numpy())
    return vc_fn

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--api', action="store_true", default=False)
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    parser.add_argument("--colab", action="store_true", default=False, help="share gradio app")
    args = parser.parse_args()
    hubert_model = utils.get_hubert_model().to(args.device)
    models = []
    for f in os.listdir("models"):
        name = f
        model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device, hubert_model=hubert_model)
        cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
        models.append((name, cover, create_vc_fn(model, name)))
    with gr.Blocks() as app:
        gr.Markdown(
            "# <center> Sovits Models\n"
            "## <center> The input audio should be clean and pure voice without background music.\n"
            "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.Sovits-Umamusume)\n\n"
            "[Open In Colab](https://colab.research.google.com/drive/1wfsBbMzmtLflOJeqc5ZnJiLY7L239hJW?usp=share_link)"
            " without queue and length limitation.\n\n"
            "[Original Repo](https://github.com/svc-develop-team/so-vits-svc)\n\n"
            "Other models:\n"
            "[rudolf](https://huggingface.co/spaces/sayashi/sovits-rudolf)\n"
            "[teio](https://huggingface.co/spaces/sayashi/sovits-teio)\n"
            "[goldship](https://huggingface.co/spaces/sayashi/sovits-goldship)\n"
            "[tannhauser](https://huggingface.co/spaces/sayashi/sovits-tannhauser)\n"

        )
        with gr.Tabs():
            for (name, cover, vc_fn) in models:
                with gr.TabItem(name):
                    with gr.Row():
                        gr.Markdown(
                            '<div align="center">'
                            f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
                            '</div>'
                        )
                    with gr.Row():
                        with gr.Column():
                            vc_input = gr.Audio(label="Input audio"+' (less than 30 seconds)' if limitation else '')
                            vc_transform = gr.Number(label="vc_transform", value=0)
                            auto_f0 = gr.Checkbox(label="auto_f0", value=False)
                            vc_submit = gr.Button("Generate", variant="primary")
                        with gr.Column():
                            vc_output1 = gr.Textbox(label="Output Message")
                            vc_output2 = gr.Audio(label="Output Audio")
                vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0], [vc_output1, vc_output2])
        if args.colab:
            webbrowser.open("http://127.0.0.1:7860")
        app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)