File size: 7,397 Bytes
6086416
26277ae
6086416
 
 
4b5c6f0
6086416
 
26277ae
247e955
200bcf6
247e955
c2dde5f
6086416
 
 
 
 
ad0b2b8
c2dde5f
 
 
 
 
 
 
 
 
 
 
6086416
247e955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6086416
 
 
 
17b78ec
 
6086416
 
 
26277ae
 
 
 
 
 
 
 
6086416
 
 
247e955
 
 
 
 
 
6086416
11ee98a
 
 
 
 
4b5c6f0
6086416
247e955
 
 
 
 
 
 
 
 
 
6086416
 
d051d21
6086416
 
 
 
c17721a
6086416
1587f86
247e955
 
 
814e97c
6086416
 
 
 
 
 
 
 
 
 
 
 
17b78ec
6086416
 
247e955
 
 
6086416
 
 
 
247e955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import io
import gradio as gr
import librosa
import numpy as np
import utils
from inference.infer_tool import Svc
import logging
import soundfile
import asyncio
import argparse
import edge_tts
import gradio.processing_utils as gr_processing_utils
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)

limitation = os.getenv("SYSTEM") == "spaces"  # limit audio length in huggingface spaces

audio_postprocess_ori = gr.Audio.postprocess

def audio_postprocess(self, y):
    data = audio_postprocess_ori(self, y)
    if data is None:
        return None
    return gr_processing_utils.encode_url_or_file_to_base64(data["name"])


gr.Audio.postprocess = audio_postprocess
def create_vc_fn(model, sid):
    def vc_fn(input_audio, vc_transform, auto_f0, tts_text, tts_voice, tts_mode):
        if tts_mode:
            if len(tts_text) > 100 and limitation:
                return "Text is too long", None
            if tts_text is None or tts_voice is None:
                return "You need to enter text and select a voice", None
            asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
            audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
            raw_path = io.BytesIO()
            soundfile.write(raw_path, audio, 16000, format="wav")
            raw_path.seek(0)
            out_audio, out_sr = model.infer(sid, vc_transform, raw_path,
                                            auto_predict_f0=auto_f0,
                                            )
            return "Success", (44100, out_audio.cpu().numpy())
        if input_audio is None:
            return "You need to upload an audio", None
        sampling_rate, audio = input_audio
        duration = audio.shape[0] / sampling_rate
        if duration > 20 and limitation:
            return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
        audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
        if len(audio.shape) > 1:
            audio = librosa.to_mono(audio.transpose(1, 0))
        if sampling_rate != 16000:
            audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
        raw_path = io.BytesIO()
        soundfile.write(raw_path, audio, 16000, format="wav")
        raw_path.seek(0)
        out_audio, out_sr = model.infer(sid, vc_transform, raw_path,
                                       auto_predict_f0=auto_f0,
                                       )
        return "Success", (44100, out_audio.cpu().numpy())
    return vc_fn

def change_to_tts_mode(tts_mode):
    if tts_mode:
        return gr.Audio.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True), gr.Checkbox.update(value=True)
    else:
        return gr.Audio.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False), gr.Checkbox.update(value=False)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--api', action="store_true", default=False)
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    args = parser.parse_args()
    hubert_model = utils.get_hubert_model().to(args.device)
    models = []
    others = {
        "rudolf": "https://huggingface.co/spaces/sayashi/sovits-rudolf",
        "teio": "https://huggingface.co/spaces/sayashi/sovits-teio",
        "goldship": "https://huggingface.co/spaces/sayashi/sovits-goldship",
        "tannhauser": "https://huggingface.co/spaces/sayashi/sovits-tannhauser"
    }
    voices = []
    tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
    for r in tts_voice_list:
        voices.append(f"{r['ShortName']}-{r['Gender']}")
    for f in os.listdir("models"):
        name = f
        model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device)
        cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
        models.append((name, cover, create_vc_fn(model, name)))
    with gr.Blocks() as app:
        gr.Markdown(
            "# <center> Sovits Models\n"
            "## <center> The input audio should be clean and pure voice without background music.\n"
            "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.Sovits-Umamusume)\n\n"
            "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wfsBbMzmtLflOJeqc5ZnJiLY7L239hJW?usp=share_link)\n\n"
            "[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/sayashi/sovits-models?duplicate=true)\n\n"
            "[![Original Repo](https://badgen.net/badge/icon/github?icon=github&label=Original%20Repo)](https://github.com/svc-develop-team/so-vits-svc)"

        )
        with gr.Tabs():
            for (name, cover, vc_fn) in models:
                with gr.TabItem(name):
                    with gr.Row():
                        gr.Markdown(
                            '<div align="center">'
                            f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
                            '</div>'
                        )
                    with gr.Row():
                        with gr.Column():
                            vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
                            vc_transform = gr.Number(label="vc_transform", value=0)
                            auto_f0 = gr.Checkbox(label="auto_f0", value=False)
                            tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
                            tts_text = gr.Textbox(visible=False, label="TTS text (100 words limitation)" if limitation else "TTS text")
                            tts_voice = gr.Dropdown(choices=voices, visible=False)
                            vc_submit = gr.Button("Generate", variant="primary")
                        with gr.Column():
                            vc_output1 = gr.Textbox(label="Output Message")
                            vc_output2 = gr.Audio(label="Output Audio")
                vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0, tts_text, tts_voice, tts_mode], [vc_output1, vc_output2])
                tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, tts_text, tts_voice, auto_f0])
            for category, link in others.items():
                with gr.TabItem(category):
                    gr.Markdown(
                        f'''
                        <center>
                          <h2>Click to Go</h2>
                          <a href="{link}">
                            <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-xl-dark.svg"
                          </a>
                        </center>
                        '''
                    )
        app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)