Spaces:
Runtime error
Runtime error
import io | |
import os | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import soundfile | |
from inference.infer_tool import Svc | |
import logging | |
import webbrowser | |
import argparse | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
logging.getLogger('markdown_it').setLevel(logging.WARNING) | |
logging.getLogger('urllib3').setLevel(logging.WARNING) | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
def create_vc_fn(model, sid): | |
def vc_fn(input_audio, vc_transform, auto_f0): | |
if input_audio is None: | |
return "You need to upload an audio", None | |
sampling_rate, audio = input_audio | |
# print(audio.shape,sampling_rate) | |
duration = audio.shape[0] / sampling_rate | |
if duration > 45: | |
return "Please upload an audio file that is less than 45 seconds. If you need to generate a longer audio file, please use Colab.", None | |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) | |
if len(audio.shape) > 1: | |
audio = librosa.to_mono(audio.transpose(1, 0)) | |
if sampling_rate != 16000: | |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) | |
out_wav_path = "temp.wav" | |
soundfile.write(out_wav_path, audio, 16000, format="wav") | |
out_audio, out_sr = model.infer(sid, vc_transform, out_wav_path, | |
auto_predict_f0=auto_f0, | |
) | |
return "Success", (44100, out_audio.cpu().numpy()) | |
return vc_fn | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--api', action="store_true", default=False) | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
parser.add_argument("--colab", action="store_true", default=False, help="share gradio app") | |
args = parser.parse_args() | |
models = [] | |
for f in os.listdir("models"): | |
name = f | |
model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device) | |
cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None | |
models.append((name, cover, create_vc_fn(model, name))) | |
with gr.Blocks() as app: | |
gr.Markdown( | |
"# <center> Sovits Umamusume\n" | |
"## <center> The input audio should be clean and pure voice without background music.\n" | |
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.Sovits-Umamusume)\n\n" | |
"[Open In Colab](https://colab.research.google.com/drive/1wfsBbMzmtLflOJeqc5ZnJiLY7L239hJW?usp=share_link)" | |
"\n\n" | |
"[Original Repo](https://github.com/innnky/so-vits-svc/tree/4.0)" | |
) | |
with gr.Tabs(): | |
for (name, cover, vc_fn) in models: | |
with gr.TabItem(name): | |
with gr.Row(): | |
gr.Markdown( | |
'<div align="center">' | |
f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "" | |
'</div>' | |
) | |
with gr.Row(): | |
with gr.Column(): | |
vc_input = gr.Audio(label="Input audio (less than 45 seconds)") | |
vc_transform = gr.Number(label="vc_transform", value=0) | |
auto_f0 = gr.Checkbox(label="auto_f0", value=False) | |
vc_submit = gr.Button("Generate", variant="primary") | |
with gr.Column(): | |
vc_output1 = gr.Textbox(label="Output Message") | |
vc_output2 = gr.Audio(label="Output Audio") | |
vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0], [vc_output1, vc_output2]) | |
if args.colab: | |
webbrowser.open("http://127.0.0.1:7860") | |
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share) |