import io import os import gradio as gr import librosa import numpy as np import soundfile from inference.infer_tool import Svc import logging import webbrowser logging.getLogger('numba').setLevel(logging.WARNING) logging.getLogger('markdown_it').setLevel(logging.WARNING) logging.getLogger('urllib3').setLevel(logging.WARNING) logging.getLogger('matplotlib').setLevel(logging.WARNING) def create_vc_fn(model, sid): def vc_fn(input_audio, vc_transform, auto_f0): if input_audio is None: return "You need to upload an audio", None sampling_rate, audio = input_audio # print(audio.shape,sampling_rate) duration = audio.shape[0] / sampling_rate if duration > 45: return "Please upload an audio file that is less than 45 seconds. If you need to generate a longer audio file, please use Colab.", None audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != 16000: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) out_wav_path = "temp.wav" soundfile.write(out_wav_path, audio, 16000, format="wav") out_audio, out_sr = model.infer(sid, vc_transform, out_wav_path, auto_predict_f0=auto_f0, ) return "Success", (44100, out_audio.cpu().numpy()) return vc_fn if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--api', action="store_true", default=False) parser.add_argument("--share", action="store_true", default=False, help="share gradio app") parser.add_argument("--colab", action="store_true", default=False, help="share gradio app") args = parser.parse_args() models = [] for f in os.listdir("models"): name = f model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device) cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None models.append((name, cover, create_vc_fn(model, name))) with gr.Blocks() as app: gr.Markdown( "#