import math import multiprocessing import os import argparse from random import shuffle import torch from glob import glob from tqdm import tqdm import utils import logging logging.getLogger('numba').setLevel(logging.WARNING) import librosa import numpy as np hps = utils.get_hparams_from_file("configs/config.json") sampling_rate = hps.data.sampling_rate hop_length = hps.data.hop_length def process_one(filename, hmodel): # print(filename) wav, sr = librosa.load(filename, sr=sampling_rate) soft_path = filename + ".soft.pt" if not os.path.exists(soft_path): devive = torch.device("cuda" if torch.cuda.is_available() else "cpu") wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000) wav16k = torch.from_numpy(wav16k).to(devive) c = utils.get_hubert_content(hmodel, wav_16k_tensor=wav16k) torch.save(c.cpu(), soft_path) f0_path = filename + ".f0.npy" if not os.path.exists(f0_path): f0 = utils.compute_f0_dio(wav, sampling_rate=sampling_rate, hop_length=hop_length) np.save(f0_path, f0) def process_batch(filenames): print("Loading hubert for content...") device = "cuda" if torch.cuda.is_available() else "cpu" hmodel = utils.get_hubert_model().to(device) print("Loaded hubert.") for filename in tqdm(filenames): process_one(filename, hmodel) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--in_dir", type=str, default="dataset/44k", help="path to input dir") args = parser.parse_args() filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True) # [:10] shuffle(filenames) multiprocessing.set_start_method('spawn') num_processes = 1 chunk_size = int(math.ceil(len(filenames) / num_processes)) chunks = [filenames[i:i + chunk_size] for i in range(0, len(filenames), chunk_size)] print([len(c) for c in chunks]) processes = [multiprocessing.Process(target=process_batch, args=(chunk,)) for chunk in chunks] for p in processes: p.start()