Spaces:
Running
Running
import io | |
import logging | |
import time | |
from pathlib import Path | |
import librosa | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import soundfile | |
from inference import infer_tool | |
from inference import slicer | |
from inference.infer_tool import Svc | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json") | |
def main(): | |
import argparse | |
parser = argparse.ArgumentParser(description='sovits4 inference') | |
# 一定要设置的部分 | |
parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth", help='模型路径') | |
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径') | |
parser.add_argument('-cl', '--clip', type=float, default=0, help='音频强制切片,默认0为自动切片,单位为秒/s') | |
parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["君の知らない物語-src.wav"], help='wav文件名列表,放在raw文件夹下') | |
parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)') | |
parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['nen'], help='合成目标说话人名称') | |
# 可选项部分 | |
parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调') | |
parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填') | |
parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, help='聚类方案占比,范围0-1,若没有训练聚类模型则默认0即可') | |
parser.add_argument('-lg', '--linear_gradient', type=float, default=0, help='两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,单位为秒') | |
parser.add_argument('-fmp', '--f0_mean_pooling', type=bool, default=False, help='是否对F0使用均值滤波器(池化),对部分哑音有改善。注意,启动该选项会导致推理速度下降,默认关闭') | |
# 不用动的部分 | |
parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50') | |
parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu') | |
parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学') | |
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现') | |
parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式') | |
parser.add_argument('-lgr', '--linear_gradient_retain', type=float, default=0.75, help='自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭') | |
args = parser.parse_args() | |
svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path) | |
infer_tool.mkdir(["raw", "results"]) | |
clean_names = args.clean_names | |
trans = args.trans | |
spk_list = args.spk_list | |
slice_db = args.slice_db | |
wav_format = args.wav_format | |
auto_predict_f0 = args.auto_predict_f0 | |
cluster_infer_ratio = args.cluster_infer_ratio | |
noice_scale = args.noice_scale | |
pad_seconds = args.pad_seconds | |
clip = args.clip | |
lg = args.linear_gradient | |
lgr = args.linear_gradient_retain | |
F0_mean_pooling = args.f0_mean_pooling | |
infer_tool.fill_a_to_b(trans, clean_names) | |
for clean_name, tran in zip(clean_names, trans): | |
raw_audio_path = f"raw/{clean_name}" | |
if "." not in raw_audio_path: | |
raw_audio_path += ".wav" | |
infer_tool.format_wav(raw_audio_path) | |
wav_path = Path(raw_audio_path).with_suffix('.wav') | |
chunks = slicer.cut(wav_path, db_thresh=slice_db) | |
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks) | |
per_size = int(clip*audio_sr) | |
lg_size = int(lg*audio_sr) | |
lg_size_r = int(lg_size*lgr) | |
lg_size_c_l = (lg_size-lg_size_r)//2 | |
lg_size_c_r = lg_size-lg_size_r-lg_size_c_l | |
lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0 | |
for spk in spk_list: | |
audio = [] | |
for (slice_tag, data) in audio_data: | |
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======') | |
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample)) | |
if slice_tag: | |
print('jump empty segment') | |
_audio = np.zeros(length) | |
audio.extend(list(infer_tool.pad_array(_audio, length))) | |
continue | |
if per_size != 0: | |
datas = infer_tool.split_list_by_n(data, per_size,lg_size) | |
else: | |
datas = [data] | |
for k,dat in enumerate(datas): | |
per_length = int(np.ceil(len(dat) / audio_sr * svc_model.target_sample)) if clip!=0 else length | |
if clip!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======') | |
# padd | |
pad_len = int(audio_sr * pad_seconds) | |
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])]) | |
raw_path = io.BytesIO() | |
soundfile.write(raw_path, dat, audio_sr, format="wav") | |
raw_path.seek(0) | |
out_audio, out_sr = svc_model.infer(spk, tran, raw_path, | |
cluster_infer_ratio=cluster_infer_ratio, | |
auto_predict_f0=auto_predict_f0, | |
noice_scale=noice_scale, | |
F0_mean_pooling = F0_mean_pooling | |
) | |
_audio = out_audio.cpu().numpy() | |
pad_len = int(svc_model.target_sample * pad_seconds) | |
_audio = _audio[pad_len:-pad_len] | |
_audio = infer_tool.pad_array(_audio, per_length) | |
if lg_size!=0 and k!=0: | |
lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr != 1 else audio[-lg_size:] | |
lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr != 1 else _audio[0:lg_size] | |
lg_pre = lg1*(1-lg)+lg2*lg | |
audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr != 1 else audio[0:-lg_size] | |
audio.extend(lg_pre) | |
_audio = _audio[lg_size_c_l+lg_size_r:] if lgr != 1 else _audio[lg_size:] | |
audio.extend(list(_audio)) | |
key = "auto" if auto_predict_f0 else f"{tran}key" | |
cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}" | |
res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}' | |
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format) | |
if __name__ == '__main__': | |
main() | |