File size: 13,555 Bytes
7b674ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
""" from https://github.com/keithito/tacotron """
'''
Cleaners are transformations that run over the input text at both training and eval time.
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
1. "english_cleaners" for English text
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
the symbols in symbols.py to match your data).
'''
import re
from unidecode import unidecode
import pyopenjtalk
from jamo import h2j, j2hcj
from pypinyin import lazy_pinyin, BOPOMOFO
import jieba, cn2an
# This is a list of Korean classifiers preceded by pure Korean numerals.
_korean_classifiers = 'κ΅°λ° κΆ κ° κ·Έλ£¨ λ’ λ λ λ§λ¦¬ λͺ¨ λͺ¨κΈ λ λ° λ°μ§ λ°© λ² λ² λ³΄λ£¨ μ΄ μ μ μ μ μνΌ μ μ§ μ± μ² μ²© μΆ μΌ€λ ν¨ ν΅'
# Regular expression matching whitespace:
_whitespace_re = re.compile(r'\s+')
# Regular expression matching Japanese without punctuation marks:
_japanese_characters = re.compile(r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
# Regular expression matching non-Japanese characters or punctuation marks:
_japanese_marks = re.compile(r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
('mrs', 'misess'),
('mr', 'mister'),
('dr', 'doctor'),
('st', 'saint'),
('co', 'company'),
('jr', 'junior'),
('maj', 'major'),
('gen', 'general'),
('drs', 'doctors'),
('rev', 'reverend'),
('lt', 'lieutenant'),
('hon', 'honorable'),
('sgt', 'sergeant'),
('capt', 'captain'),
('esq', 'esquire'),
('ltd', 'limited'),
('col', 'colonel'),
('ft', 'fort'),
]]
# List of (hangul, hangul divided) pairs:
_hangul_divided = [(re.compile('%s' % x[0]), x[1]) for x in [
('γ³', 'γ±γ
'),
('γ΅', 'γ΄γ
'),
('γΆ', 'γ΄γ
'),
('γΊ', 'γΉγ±'),
('γ»', 'γΉγ
'),
('γΌ', 'γΉγ
'),
('γ½', 'γΉγ
'),
('γΎ', 'γΉγ
'),
('γΏ', 'γΉγ
'),
('γ
', 'γΉγ
'),
('γ
', 'γ
γ
'),
('γ
', 'γ
γ
'),
('γ
', 'γ
γ
'),
('γ
', 'γ
γ
£'),
('γ
', 'γ
γ
'),
('γ
', 'γ
γ
'),
('γ
', 'γ
γ
£'),
('γ
’', 'γ
‘γ
£'),
('γ
', 'γ
£γ
'),
('γ
', 'γ
£γ
'),
('γ
', 'γ
£γ
'),
('γ
', 'γ
£γ
'),
('γ
', 'γ
£γ
'),
('γ
', 'γ
£γ
')
]]
# List of (Latin alphabet, hangul) pairs:
_latin_to_hangul = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
('a', 'μμ΄'),
('b', 'λΉ'),
('c', 'μ'),
('d', 'λ'),
('e', 'μ΄'),
('f', 'μν'),
('g', 'μ§'),
('h', 'μμ΄μΉ'),
('i', 'μμ΄'),
('j', 'μ μ΄'),
('k', 'μΌμ΄'),
('l', 'μ'),
('m', 'μ '),
('n', 'μ'),
('o', 'μ€'),
('p', 'νΌ'),
('q', 'ν'),
('r', 'μλ₯΄'),
('s', 'μμ€'),
('t', 'ν°'),
('u', 'μ '),
('v', 'λΈμ΄'),
('w', 'λλΈμ '),
('x', 'μμ€'),
('y', 'μμ΄'),
('z', 'μ νΈ')
]]
# List of (Latin alphabet, bopomofo) pairs:
_latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
('a', 'γΛ'),
('b', 'γ
γ§Λ'),
('c', 'γγ§Λ'),
('d', 'γγ§Λ'),
('e', 'γ§Λ'),
('f', 'γΛγγ¨Λ'),
('g', 'γγ§Λ'),
('h', 'γΛγγ©Λ'),
('i', 'γΛ'),
('j', 'γγΛ'),
('k', 'γγΛ'),
('l', 'γΛγΛ'),
('m', 'γΛγγ¨Λ'),
('n', 'γ£Λ'),
('o', 'γ‘Λ'),
('p', 'γγ§Λ'),
('q', 'γγ§γ‘Λ'),
('r', 'γΛ'),
('s', 'γΛγΛ'),
('t', 'γγ§Λ'),
('u', 'γ§γ‘Λ'),
('v', 'γ¨γ§Λ'),
('w', 'γγΛγ
γ¨Λγγ§γ‘Λ'),
('x', 'γΛγγ¨ΛγΛ'),
('y', 'γ¨γΛ'),
('z', 'γγΛ')
]]
# List of (bopomofo, romaji) pairs:
_bopomofo_to_romaji = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
('γ
γ', 'pβΌwo'),
('γγ', 'pΚ°wo'),
('γγ', 'mwo'),
('γγ', 'fwo'),
('γ
', 'pβΌ'),
('γ', 'pΚ°'),
('γ', 'm'),
('γ', 'f'),
('γ', 'tβΌ'),
('γ', 'tΚ°'),
('γ', 'n'),
('γ', 'l'),
('γ', 'kβΌ'),
('γ', 'kΚ°'),
('γ', 'h'),
('γ', 'Κ§βΌ'),
('γ', 'Κ§Κ°'),
('γ', 'Κ'),
('γ', 'Κ¦`βΌ'),
('γ', 'Κ¦`Κ°'),
('γ', 's`'),
('γ', 'ΙΉ`'),
('γ', 'Κ¦βΌ'),
('γ', 'Κ¦Κ°'),
('γ', 's'),
('γ', 'a'),
('γ', 'o'),
('γ', 'Ι'),
('γ', 'e'),
('γ', 'ai'),
('γ', 'ei'),
('γ ', 'au'),
('γ‘', 'ou'),
('γ§γ’', 'yeNN'),
('γ’', 'aNN'),
('γ§γ£', 'iNN'),
('γ£', 'ΙNN'),
('γ€', 'aNg'),
('γ§γ₯', 'iNg'),
('γ¨γ₯', 'uNg'),
('γ©γ₯', 'yuNg'),
('γ₯', 'ΙNg'),
('γ¦', 'ΙΙ»'),
('γ§', 'i'),
('γ¨', 'u'),
('γ©', 'Ι₯'),
('Λ', 'β'),
('Λ', 'β'),
('Λ', 'ββ'),
('Λ', 'β'),
('Λ', ''),
('οΌ', ','),
('γ', '.'),
('οΌ', '!'),
('οΌ', '?'),
('β', '-')
]]
def expand_abbreviations(text):
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, ' ', text)
def convert_to_ascii(text):
return unidecode(text)
def japanese_to_romaji_with_accent(text):
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
sentences = re.split(_japanese_marks, text)
marks = re.findall(_japanese_marks, text)
text = ''
for i, sentence in enumerate(sentences):
if re.match(_japanese_characters, sentence):
if text!='':
text+=' '
labels = pyopenjtalk.extract_fullcontext(sentence)
for n, label in enumerate(labels):
phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
if phoneme not in ['sil','pau']:
text += phoneme.replace('ch','Κ§').replace('sh','Κ').replace('cl','Q')
else:
continue
n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
a3 = int(re.search(r"\+(\d+)/", label).group(1))
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil','pau']:
a2_next=-1
else:
a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
# Accent phrase boundary
if a3 == 1 and a2_next == 1:
text += ' '
# Falling
elif a1 == 0 and a2_next == a2 + 1 and a2 != n_moras:
text += 'β'
# Rising
elif a2 == 1 and a2_next == 2:
text += 'β'
if i<len(marks):
text += unidecode(marks[i]).replace(' ','')
return text
def latin_to_hangul(text):
for regex, replacement in _latin_to_hangul:
text = re.sub(regex, replacement, text)
return text
def divide_hangul(text):
for regex, replacement in _hangul_divided:
text = re.sub(regex, replacement, text)
return text
def hangul_number(num, sino=True):
'''Reference https://github.com/Kyubyong/g2pK'''
num = re.sub(',', '', num)
if num == '0':
return 'μ'
if not sino and num == '20':
return 'μ€λ¬΄'
digits = '123456789'
names = 'μΌμ΄μΌμ¬μ€μ‘μΉ νꡬ'
digit2name = {d: n for d, n in zip(digits, names)}
modifiers = 'ν λ μΈ λ€ λ€μ― μ¬μ― μΌκ³± μ¬λ μν'
decimals = 'μ΄ μ€λ¬Ό μλ₯Έ λ§ν μ° μμ μΌν μ¬λ μν'
digit2mod = {d: mod for d, mod in zip(digits, modifiers.split())}
digit2dec = {d: dec for d, dec in zip(digits, decimals.split())}
spelledout = []
for i, digit in enumerate(num):
i = len(num) - i - 1
if sino:
if i == 0:
name = digit2name.get(digit, '')
elif i == 1:
name = digit2name.get(digit, '') + 'μ'
name = name.replace('μΌμ', 'μ')
else:
if i == 0:
name = digit2mod.get(digit, '')
elif i == 1:
name = digit2dec.get(digit, '')
if digit == '0':
if i % 4 == 0:
last_three = spelledout[-min(3, len(spelledout)):]
if ''.join(last_three) == '':
spelledout.append('')
continue
else:
spelledout.append('')
continue
if i == 2:
name = digit2name.get(digit, '') + 'λ°±'
name = name.replace('μΌλ°±', 'λ°±')
elif i == 3:
name = digit2name.get(digit, '') + 'μ²'
name = name.replace('μΌμ²', 'μ²')
elif i == 4:
name = digit2name.get(digit, '') + 'λ§'
name = name.replace('μΌλ§', 'λ§')
elif i == 5:
name = digit2name.get(digit, '') + 'μ'
name = name.replace('μΌμ', 'μ')
elif i == 6:
name = digit2name.get(digit, '') + 'λ°±'
name = name.replace('μΌλ°±', 'λ°±')
elif i == 7:
name = digit2name.get(digit, '') + 'μ²'
name = name.replace('μΌμ²', 'μ²')
elif i == 8:
name = digit2name.get(digit, '') + 'μ΅'
elif i == 9:
name = digit2name.get(digit, '') + 'μ'
elif i == 10:
name = digit2name.get(digit, '') + 'λ°±'
elif i == 11:
name = digit2name.get(digit, '') + 'μ²'
elif i == 12:
name = digit2name.get(digit, '') + 'μ‘°'
elif i == 13:
name = digit2name.get(digit, '') + 'μ'
elif i == 14:
name = digit2name.get(digit, '') + 'λ°±'
elif i == 15:
name = digit2name.get(digit, '') + 'μ²'
spelledout.append(name)
return ''.join(elem for elem in spelledout)
def number_to_hangul(text):
'''Reference https://github.com/Kyubyong/g2pK'''
tokens = set(re.findall(r'(\d[\d,]*)([\uac00-\ud71f]+)', text))
for token in tokens:
num, classifier = token
if classifier[:2] in _korean_classifiers or classifier[0] in _korean_classifiers:
spelledout = hangul_number(num, sino=False)
else:
spelledout = hangul_number(num, sino=True)
text = text.replace(f'{num}{classifier}', f'{spelledout}{classifier}')
# digit by digit for remaining digits
digits = '0123456789'
names = 'μμΌμ΄μΌμ¬μ€μ‘μΉ νꡬ'
for d, n in zip(digits, names):
text = text.replace(d, n)
return text
def number_to_chinese(text):
numbers = re.findall(r'\d+(?:\.?\d+)?', text)
for number in numbers:
text = text.replace(number, cn2an.an2cn(number),1)
return text
def chinese_to_bopomofo(text):
text=text.replace('γ','οΌ').replace('οΌ','οΌ').replace('οΌ','οΌ')
words=jieba.lcut(text,cut_all=False)
text=''
for word in words:
bopomofos=lazy_pinyin(word,BOPOMOFO)
if not re.search('[\u4e00-\u9fff]',word):
text+=word
continue
for i in range(len(bopomofos)):
if re.match('[\u3105-\u3129]',bopomofos[i][-1]):
bopomofos[i]+='Λ'
if text!='':
text+=' '
text+=''.join(bopomofos)
return text
def latin_to_bopomofo(text):
for regex, replacement in _latin_to_bopomofo:
text = re.sub(regex, replacement, text)
return text
def bopomofo_to_romaji(text):
for regex, replacement in _bopomofo_to_romaji:
text = re.sub(regex, replacement, text)
return text
def basic_cleaners(text):
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
text = lowercase(text)
text = collapse_whitespace(text)
return text
def transliteration_cleaners(text):
'''Pipeline for non-English text that transliterates to ASCII.'''
text = convert_to_ascii(text)
text = lowercase(text)
text = collapse_whitespace(text)
return text
def japanese_cleaners(text):
text=japanese_to_romaji_with_accent(text)
if re.match('[A-Za-z]',text[-1]):
text += '.'
return text
def japanese_cleaners2(text):
return japanese_cleaners(text).replace('ts','Κ¦').replace('...','β¦')
def korean_cleaners(text):
'''Pipeline for Korean text'''
text = latin_to_hangul(text)
text = number_to_hangul(text)
text = j2hcj(h2j(text))
text = divide_hangul(text)
if re.match('[\u3131-\u3163]',text[-1]):
text += '.'
return text
def chinese_cleaners(text):
'''Pipeline for Chinese text'''
text=number_to_chinese(text)
text=chinese_to_bopomofo(text)
text=latin_to_bopomofo(text)
if re.match('[ΛΛΛΛΛ]',text[-1]):
text += 'γ'
return text
def zh_ja_mixture_cleaners(text):
chinese_texts=re.findall(r'\[ZH\].*?\[ZH\]',text)
japanese_texts=re.findall(r'\[JA\].*?\[JA\]',text)
for chinese_text in chinese_texts:
cleaned_text=number_to_chinese(chinese_text[4:-4])
cleaned_text=chinese_to_bopomofo(cleaned_text)
cleaned_text=latin_to_bopomofo(cleaned_text)
cleaned_text=bopomofo_to_romaji(cleaned_text)
cleaned_text=re.sub('i[aoe]',lambda x:'y'+x.group(0)[1:],cleaned_text)
cleaned_text=re.sub('u[aoΙe]',lambda x:'w'+x.group(0)[1:],cleaned_text)
cleaned_text=re.sub('([Κ¦sΙΉ]`[βΌΚ°]?)([βββ]+)',lambda x:x.group(1)+'ΙΉ`'+x.group(2),cleaned_text).replace('Ι»','ΙΉ`')
cleaned_text=re.sub('([Κ¦s][βΌΚ°]?)([βββ]+)',lambda x:x.group(1)+'ΙΉ'+x.group(2),cleaned_text)
text = text.replace(chinese_text,cleaned_text+' ',1)
for japanese_text in japanese_texts:
cleaned_text=japanese_to_romaji_with_accent(japanese_text[4:-4]).replace('ts','Κ¦').replace('u','Ι―').replace('...','β¦')
text = text.replace(japanese_text,cleaned_text+' ',1)
text=text[:-1]
if len(text) and re.match('[A-Za-zΙ―ΙΉΙΙ₯βββ]',text[-1]):
text += '.'
return text |