Spaces:
Running
Running
File size: 14,888 Bytes
b875bd7 3fd0c0d b875bd7 3fd0c0d b875bd7 8e15dd6 b875bd7 b54579f b875bd7 3fd0c0d b875bd7 b54579f 8e15dd6 b875bd7 8e15dd6 b875bd7 3fd0c0d a9e3d65 3fd0c0d 8e15dd6 b875bd7 3fd0c0d b875bd7 3fd0c0d b875bd7 8e15dd6 eaa3271 5b8ad64 8e15dd6 5b8ad64 8e15dd6 eaa3271 8e15dd6 b875bd7 5b8ad64 8e15dd6 5b8ad64 b875bd7 5b8ad64 b875bd7 d95ac39 b875bd7 3fd0c0d d595ee0 3fd0c0d b875bd7 51ff334 3fd0c0d b54579f b875bd7 75b5bd6 b875bd7 3fd0c0d 8e15dd6 b875bd7 1500087 8e15dd6 b875bd7 b3bac56 b54579f 4133e57 b875bd7 8e15dd6 b875bd7 f4da48c b875bd7 a9e3d65 b875bd7 b54579f 8e15dd6 b875bd7 a974a24 b875bd7 d95ac39 b875bd7 0c3c2eb 8e15dd6 5b8ad64 8e15dd6 eaa3271 8e15dd6 b875bd7 8e15dd6 b875bd7 f4da48c b875bd7 a9e3d65 b875bd7 b54579f 8e15dd6 b875bd7 a974a24 b875bd7 d95ac39 b875bd7 0c3c2eb d95ac39 b875bd7 8e15dd6 eaa3271 8e15dd6 d595ee0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# coding=utf-8
import os
import re
import argparse
import utils
import commons
import json
import torch
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence, _clean_text
from torch import no_grad, LongTensor
import gradio.processing_utils as gr_processing_utils
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
hps_ms = utils.get_hparams_from_file(r'config/config.json')
audio_postprocess_ori = gr.Audio.postprocess
def audio_postprocess(self, y):
data = audio_postprocess_ori(self, y)
if data is None:
return None
return gr_processing_utils.encode_url_or_file_to_base64(data["name"])
gr.Audio.postprocess = audio_postprocess
def get_text(text, hps, is_symbol):
text_norm, clean_text = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm, clean_text
def create_tts_fn(net_g_ms, speaker_id):
def tts_fn(text, language, noise_scale, noise_scale_w, length_scale, is_symbol):
text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
if limitation:
text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
max_len = 100
if is_symbol:
max_len *= 3
if text_len > max_len:
return "Error: Text is too long", None
if not is_symbol:
if language == 0:
text = f"[ZH]{text}[ZH]"
elif language == 1:
text = f"[JA]{text}[JA]"
else:
text = f"{text}"
stn_tst, clean_text = get_text(text, hps_ms, is_symbol)
with no_grad():
x_tst = stn_tst.unsqueeze(0).to(device)
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
sid = LongTensor([speaker_id]).to(device)
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
length_scale=length_scale)[0][0, 0].data.cpu().float().numpy()
return "Success", (22050, audio)
return tts_fn
def create_to_symbol_fn(hps):
def to_symbol_fn(is_symbol_input, input_text, temp_lang):
if temp_lang == 0:
clean_text = f'[ZH]{input_text}[ZH]'
elif temp_lang == 1:
clean_text = f'[JA]{input_text}[JA]'
else:
clean_text = input_text
return _clean_text(clean_text, hps.data.text_cleaners) if is_symbol_input else ''
return to_symbol_fn
def change_lang(language):
if language == 0:
return 0.6, 0.668, 1.2
elif language == 1:
return 0.6, 0.668, 1
else:
return 0.6, 0.668, 1
download_audio_js = """
() =>{{
let root = document.querySelector("body > gradio-app");
if (root.shadowRoot != null)
root = root.shadowRoot;
let audio = root.querySelector("#tts-audio-{audio_id}").querySelector("audio");
let text = root.querySelector("#input-text-{audio_id}").querySelector("textarea");
if (audio == undefined)
return;
text = text.value;
if (text == undefined)
text = Math.floor(Math.random()*100000000);
audio = audio.src;
let oA = document.createElement("a");
oA.download = text.substr(0, 20)+'.wav';
oA.href = audio;
document.body.appendChild(oA);
oA.click();
oA.remove();
}}
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--api', action="store_true", default=False)
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
args = parser.parse_args()
device = torch.device(args.device)
models = []
with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
for i, info in models_info.items():
if not info['enable']:
continue
sid = info['sid']
name_en = info['name_en']
name_zh = info['name_zh']
title = info['title']
cover = f"pretrained_models/{i}/{info['cover']}"
example = info['example']
language = info['language']
net_g_ms = SynthesizerTrn(
len(hps_ms.symbols),
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps_ms.data.hop_length,
n_speakers=hps_ms.data.n_speakers if info['type'] == "multi" else 0,
**hps_ms.model)
utils.load_checkpoint(f'pretrained_models/{i}/{i}.pth', net_g_ms, None)
_ = net_g_ms.eval().to(device)
models.append((sid, name_en, name_zh, title, cover, example, language, net_g_ms, create_tts_fn(net_g_ms, sid), create_to_symbol_fn(hps_ms)))
with gr.Blocks() as app:
gr.Markdown(
"# <center> vits-models\n"
"## <center> Please do not generate content that could infringe upon the rights or cause harm to individuals or organizations.\n"
"## <center> ·请不要生成会对个人以及组织造成侵害的内容\n"
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.vits-models)\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/drive/10QOk9NPgoKZUXkIhhuVaZ7SYra1MPMKH?usp=share_link)"
" without queue and length limitation.(无需等待队列,并且没有长度限制)\n\n"
"[Finetune your own model](https://github.com/SayaSS/vits-finetuning)"
)
with gr.Tabs():
with gr.TabItem("EN"):
for (sid, name_en, name_zh, title, cover, example, language, net_g_ms, tts_fn, to_symbol_fn) in models:
with gr.TabItem(name_en):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<a><strong>{title}</strong></a>'
f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
'</div>'
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Text (100 words limitation)" if limitation else "Text", lines=5, value=example, elem_id=f"input-text-en-{name_en.replace(' ','')}")
lang = gr.Dropdown(label="Language", choices=["Chinese", "Japanese", "Mix(wrap the Chinese text with [ZH][ZH], wrap the Japanese text with [JA][JA])"],
type="index", value=language)
with gr.Accordion(label="Advanced Options", open=False):
symbol_input = gr.Checkbox(value=False, label="Symbol input")
symbol_list = gr.Dataset(label="Symbol list", components=[input_text],
samples=[[x] for x in hps_ms.symbols])
symbol_list_json = gr.Json(value=hps_ms.symbols, visible=False)
btn = gr.Button(value="Generate", variant="primary")
with gr.Row():
ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1.2 if language=="Chinese" else 1, interactive=True)
with gr.Column():
o1 = gr.Textbox(label="Output Message")
o2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio-en-{name_en.replace(' ','')}")
download = gr.Button("Download Audio")
btn.click(tts_fn, inputs=[input_text, lang, ns, nsw, ls, symbol_input], outputs=[o1, o2], api_name=f"tts-{name_en}")
download.click(None, [], [], _js=download_audio_js.format(audio_id=f"en-{name_en.replace(' ', '')}"))
lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
symbol_input.change(
to_symbol_fn,
[symbol_input, input_text, lang],
[input_text]
)
symbol_list.click(None, [symbol_list, symbol_list_json], [input_text],
_js=f"""
(i,symbols) => {{
let root = document.querySelector("body > gradio-app");
if (root.shadowRoot != null)
root = root.shadowRoot;
let text_input = root.querySelector("#input-text-en-{name_en.replace(' ', '')}").querySelector("textarea");
let startPos = text_input.selectionStart;
let endPos = text_input.selectionEnd;
let oldTxt = text_input.value;
let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos);
text_input.value = result;
let x = window.scrollX, y = window.scrollY;
text_input.focus();
text_input.selectionStart = startPos + symbols[i].length;
text_input.selectionEnd = startPos + symbols[i].length;
text_input.blur();
window.scrollTo(x, y);
return text_input.value;
}}""")
with gr.TabItem("中文"):
for (sid, name_en, name_zh, title, cover, example, language, net_g_ms, tts_fn, to_symbol_fn) in models:
with gr.TabItem(name_zh):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<a><strong>{title}</strong></a>'
f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
'</div>'
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="文本 (100字上限)" if limitation else "文本", lines=5, value=example, elem_id=f"input-text-zh-{name_zh}")
lang = gr.Dropdown(label="语言", choices=["中文", "日语", "中日混合(中文用[ZH][ZH]包裹起来,日文用[JA][JA]包裹起来)"],
type="index", value="中文"if language == "Chinese" else "日语")
with gr.Accordion(label="高级选项", open=False):
symbol_input = gr.Checkbox(value=False, label="符号输入")
symbol_list = gr.Dataset(label="符号列表", components=[input_text],
samples=[[x] for x in hps_ms.symbols])
symbol_list_json = gr.Json(value=hps_ms.symbols, visible=False)
btn = gr.Button(value="生成", variant="primary")
with gr.Row():
ns = gr.Slider(label="控制感情变化程度", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
nsw = gr.Slider(label="控制音素发音长度", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
ls = gr.Slider(label="控制整体语速", minimum=0.1, maximum=2.0, step=0.1, value=1.2 if language=="Chinese" else 1, interactive=True)
with gr.Column():
o1 = gr.Textbox(label="输出信息")
o2 = gr.Audio(label="输出音频", elem_id=f"tts-audio-zh-{name_zh}")
download = gr.Button("下载音频")
btn.click(tts_fn, inputs=[input_text, lang, ns, nsw, ls, symbol_input], outputs=[o1, o2])
download.click(None, [], [], _js=download_audio_js.format(audio_id=f"zh-{name_zh}"))
lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
symbol_input.change(
to_symbol_fn,
[symbol_input, input_text, lang],
[input_text]
)
symbol_list.click(None, [symbol_list, symbol_list_json], [input_text],
_js=f"""
(i,symbols) => {{
let root = document.querySelector("body > gradio-app");
if (root.shadowRoot != null)
root = root.shadowRoot;
let text_input = root.querySelector("#input-text-zh-{name_zh}").querySelector("textarea");
let startPos = text_input.selectionStart;
let endPos = text_input.selectionEnd;
let oldTxt = text_input.value;
let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos);
text_input.value = result;
let x = window.scrollX, y = window.scrollY;
text_input.focus();
text_input.selectionStart = startPos + symbols[i].length;
text_input.selectionEnd = startPos + symbols[i].length;
text_input.blur();
window.scrollTo(x, y);
return text_input.value;
}}""")
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)
|