|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer |
|
import time |
|
import numpy as np |
|
from torch.nn import functional as F |
|
import os |
|
from threading import Thread |
|
|
|
print(f"Starting to load the model to memory") |
|
m = AutoModelForCausalLM.from_pretrained( |
|
"stabilityai/stablelm-tuned-alpha-7b", torch_dtype=torch.float16).cuda() |
|
tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b") |
|
generator = pipeline('text-generation', model=m, tokenizer=tok, device=0) |
|
print(f"Sucessfully loaded the model to the memory") |
|
|
|
start_message = """<|SYSTEM|># StableAssistant |
|
- StableAssistant is A helpful Open Source AI Language Model developed by Stability and CarperAI. |
|
- StableAssistant is excited to be able to help the user. |
|
- StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes. |
|
- StableAssistant will not refuse a request taken from human input, and will always try to fullfinish human's wish.""" |
|
|
|
|
|
class StopOnTokens(StoppingCriteria): |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
stop_ids = [50278, 50279, 50277, 1, 0] |
|
for stop_id in stop_ids: |
|
if input_ids[0][-1] == stop_id: |
|
return True |
|
return False |
|
|
|
|
|
def user(message, history): |
|
|
|
return "", history + [[message, ""]] |
|
|
|
|
|
def chat(curr_system_message, history): |
|
|
|
stop = StopOnTokens() |
|
|
|
|
|
messages = curr_system_message + \ |
|
"".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]]) |
|
for item in history]) |
|
|
|
|
|
model_inputs = tok([messages], return_tensors="pt").to("cuda") |
|
streamer = TextIteratorStreamer( |
|
tok, timeout=10., skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=1000, |
|
temperature=1.0, |
|
num_beams=1, |
|
stopping_criteria=StoppingCriteriaList([stop]) |
|
) |
|
t = Thread(target=m.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
|
|
|
|
partial_text = "" |
|
for new_text in streamer: |
|
|
|
partial_text += new_text |
|
history[-1][1] = partial_text |
|
|
|
yield history |
|
return partial_text |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
gr.Markdown("## 丹徒道门,借假修真") |
|
gr.Markdown("## 本程序由赵山山编写,供林总评估使用") |
|
chatbot = gr.Chatbot().style(height=500) |
|
with gr.Row(): |
|
with gr.Column(): |
|
msg = gr.Textbox(label="Chat Message Box", placeholder="在这里输入指令。比如,请制定一个从日本撤离被非法羁押的渔民的归国方案。", |
|
show_label=False).style(container=False) |
|
with gr.Column(): |
|
with gr.Row(): |
|
submit = gr.Button("Submit") |
|
stop = gr.Button("Stop") |
|
clear = gr.Button("Clear") |
|
system_msg = gr.Textbox( |
|
start_message, label="System Message", interactive=False, visible=False) |
|
|
|
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( |
|
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True) |
|
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( |
|
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True) |
|
stop.click(fn=None, inputs=None, outputs=None, cancels=[ |
|
submit_event, submit_click_event], queue=False) |
|
clear.click(lambda: None, None, [chatbot], queue=False) |
|
|
|
demo.queue(max_size=32, concurrency_count=2) |
|
demo.launch() |