multimodal_rag_chat / app_open.py
ztor2's picture
Upload app_open.py
2ad079a verified
raw
history blame
5.21 kB
import gradio as gr
import os
from langchain_openai import OpenAIEmbeddings
from langchain_postgres.vectorstores import PGVector
from langchain_openai import ChatOpenAI
from langchain.schema import HumanMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
import qdrant_client
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.core import SimpleDirectoryReader
from llama_index.core.indices.multi_modal.base import MultiModalVectorStoreIndex
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
os.environ["OPENAI_API_KEY"] = "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"
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
chat_llm = ChatOpenAI(temperature = 0.5, model = 'gpt-4-turbo')
contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is."""
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
qa_system_prompt = """You are an assistant for question-answering tasks. \
Use the following pieces of retrieved context to answer the question. \
If you don't know the answer, just say that you don't know. \
context: {context}"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
question_answer_chain = create_stuff_documents_chain(chat_llm, qa_prompt)
# pg_connection = "postgresql+psycopg://postgres:3434@localhost:5433/mmrag"
pg_connection = "postgresql+psycopg://postgres:3434@43.201.34.191:5432/postgres"
qd_client = qdrant_client.QdrantClient(path="qdrant_db")
image_store = QdrantVectorStore(client=qd_client, collection_name="image_collection")
storage_context = StorageContext.from_defaults(image_store=image_store)
openai_mm_llm = OpenAIMultiModal(model="gpt-4o", max_new_tokens=1500)
def response(message, history, doc_label):
text_store = PGVector(collection_name=doc_label,
embeddings=embeddings,
connection=pg_connection)
retriever = text_store.as_retriever()
history_aware_retriever = create_history_aware_retriever(chat_llm,
retriever,
contextualize_q_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
response = rag_chain.invoke({"input": message, "chat_history": chat_history})
chat_history.extend([HumanMessage(content=message), response["answer"]])
return response["answer"]
def img_retrieve(query, doc_label):
doc_imgs = SimpleDirectoryReader(f"./{doc_label}").load_data()
index = MultiModalVectorStoreIndex.from_documents(doc_imgs,
storage_context=storage_context)
img_query_engine = index.as_query_engine(llm=openai_mm_llm,
image_similarity_top_k=3)
response_mm = img_query_engine.query(query)
retrieved_imgs = [n.metadata["file_path"] for n in response_mm.metadata["image_nodes"]]
return retrieved_imgs
chat_history = []
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
with gr.Row():
gr.Markdown(
"""
# 🎨 Multi-modal RAG Chatbot
""")
with gr.Row():
gr.Markdown("""Select document from the menu, and interact with the text and images in the document.
""")
with gr.Row():
with gr.Column(scale=2):
doc_label = gr.Dropdown(["LLaVA", "Interior"], label="Select a document:")
chatbot = gr.ChatInterface(fn=response, additional_inputs=[doc_label], fill_height=True)
with gr.Column(scale=1):
sample_1 = "https://i.ytimg.com/vi/bLj_mR4Fnls/maxresdefault.jpg"
sample_2 = "https://i.ytimg.com/vi/bOJdHU99OO8/maxresdefault.jpg"
sample_3 = "https://blog.kakaocdn.net/dn/nqcUB/btrzYjTgjWl/jFFlIBrdkoKv4jbSyZbiEk/img.jpg"
gallery = gr.Gallery(label="Retrieved images",
show_label=True, preview=True,
object_fit="contain",
value=[(sample_1, 'sample_1'),
(sample_2, 'sample_2'),
(sample_3, 'sample_3')])
query = gr.Textbox(label="Enter query")
button = gr.Button(value="Retrieve images")
button.click(img_retrieve, [query, doc_label], gallery)
demo.launch(share=True)