Spaces:
Restarting
Restarting
import os | |
import time | |
import streamlit as st | |
from langchain_groq import ChatGroq | |
from langchain_community.document_loaders import PyPDFDirectoryLoader | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain.chains import create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_community.vectorstores import FAISS | |
from dotenv import load_dotenv | |
from sentence_transformers import SentenceTransformer | |
# Load environment variables | |
load_dotenv() | |
groq_api_key = os.getenv("GROQ_API_KEY") | |
# Streamlit Title | |
st.title("ChatGroq RAG with PDF") | |
# Initialize LLM | |
llm = ChatGroq(groq_api_key=groq_api_key, model="llama3-8b-8192") | |
# Define Prompt Template | |
prompt = ChatPromptTemplate.from_template( | |
""" | |
Answer the questions based on the provided context only. | |
Please provide the most accurate response based on the question | |
<context> | |
{context} | |
<context> | |
Question: {input} | |
""" | |
) | |
# Initialize Embedding Model | |
# Embedding Function | |
def vector_embedding(): | |
if "vectors" not in st.session_state: | |
st.session_state.loader = PyPDFDirectoryLoader("./pdf") | |
st.session_state.docs = st.session_state.loader.load() | |
st.session_state.text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, chunk_overlap=200 | |
) | |
st.session_state.final_document = st.session_state.text_splitter.split_documents( | |
st.session_state.docs | |
) | |
model_name = "sentence-transformers/all-mpnet-base-v2" | |
st.session_state.embeddings = HuggingFaceEmbeddings(model_name=model_name) | |
#model = SentenceTransformer("jxm/cde-small-v1", trust_remote_code=True) | |
#st.session_state.embeddings = HuggingFaceEmbeddings(model=model) | |
st.session_state.vectors = FAISS.from_documents( | |
st.session_state.final_document, st.session_state.embeddings | |
) | |
# UI for User Input | |
prompt1 = st.text_input("Enter Your Question from Documents") | |
# Embed Documents Button | |
if st.button("Document Embedding"): | |
with st.spinner("Embedding documents..."): | |
vector_embedding() | |
st.success("Vector Store created.") | |
# Handle Queries | |
if prompt1.strip(): | |
if "vectors" not in st.session_state or st.session_state.vectors is None: | |
st.error("Please embed the documents first by clicking the 'Document Embedding' button.") | |
else: | |
with st.spinner("Fetching response..."): | |
start = time.time() | |
document_chain = create_stuff_documents_chain(llm, prompt) | |
retriever = st.session_state.vectors.as_retriever() | |
retrieval_chain = create_retrieval_chain(retriever, document_chain) | |
response = retrieval_chain.invoke({"input": prompt1}) | |
end = time.time() | |
st.write(response['answer']) | |
st.write(f"Response generated in {end - start:.2f} seconds.") | |
with st.expander("Document Similarity Search"): | |
context = response.get('context', []) | |
if not context: | |
st.write("No similar documents found.") | |
else: | |
for i, doc in enumerate(context): | |
st.write(doc.page_content) | |
st.write("-----------------------------------------------") | |