Spaces:
Runtime error
Runtime error
File size: 5,934 Bytes
34c466e 7b9d97a 34c466e 7b9d97a 34c466e 8bf32ee 34c466e 85ce618 34c466e 6a11631 4687fd0 34c466e e4e460e 34c466e 85ce618 34c466e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Import necessary libraries
import os
from threading import Thread
import argparse
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer, AutoModelForCausalLM
from peft import PeftConfig, PeftModel
from utils import get_device # Assuming this function exists
from huggingface_hub import login
# Authenticate using Hugging Face API token from environment variable
hf_api_token = os.getenv("HF_API_TOKEN")
if hf_api_token is None:
raise ValueError("Hugging Face API token not found in environment variables. Please set it as a secret in Hugging Face Spaces.")
login(token=hf_api_token)
# Create the parser
parser = argparse.ArgumentParser(description='Check model usage.')
# Add the arguments
parser.add_argument('--baseonly', action='store_true',
help='A boolean switch to indicate base only mode')
# Execute the parse_args() method
args = parser.parse_args()
# Define model and adapter names, data type, and quantization type
model_name = "microsoft/Phi-3-mini-4k-instruct"
adapters_name = "zurd46/eliAI"
torch_dtype = torch.bfloat16 # Set the appropriate torch data type
# Display device and CPU thread information
device = get_device()
print(f"Number of GPUs available: {torch.cuda.device_count()}")
print(f"Running on device: {device}")
print(f"CPU threads: {torch.get_num_threads()}")
# Check if CUDA is available and set the device accordingly
if not torch.cuda.is_available():
raise RuntimeError("CUDA is not available. Ensure that a GPU is available and properly configured.")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load base model
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype)
model.resize_token_embeddings(len(tokenizer))
# Load adapter if available and not baseonly
usingAdapter = False
if not args.baseonly:
usingAdapter = True
model = PeftModel.from_pretrained(model, adapters_name)
model.to(device)
print(f"Model {model_name} loaded successfully on {device}")
# Function to run the text generation process
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
template = "<|context|><|user|>\n{}<|end|>\n<|assistant|>"
model_inputs = tokenizer(template.format(user_text) if usingAdapter else user_text, return_tensors="pt")
model_inputs = model_inputs.to(device)
# Generate text in a separate thread
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=model_inputs['input_ids'],
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=float(temperature),
top_k=top_k,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Retrieve and yield the generated text
model_output = ""
for new_text in streamer:
model_output += new_text
return model_output
# Gradio UI setup
with gr.Blocks(css="""
.form.svelte-sfqy0y {
background: var(--block-background-fill);
padding: 20px;
}
body {
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
color: #e0e0e0;
margin: 0;
padding: 0;
box-sizing: border-box;
}
.gradio-container {
max-width: 900px;
margin: auto;
padding: 20px;
border-radius: 8px;
box-shadow: 0 0 10px rgba(0,0,0,0.5);
}
.gr-button {
color: white;
border: none;
border-radius: 4px;
padding: 10px 24px;
cursor: pointer;
}
.gr-button:hover {
background-color: #3700b3;
}
.gr-slider input[type=range] {
-webkit-appearance: none;
width: 100%;
height: 8px;
border-radius: 5px;
outline: none;
opacity: 0.9;
-webkit-transition: .2s;
transition: opacity .2s;
}
.gr-slider input[type=range]:hover {
opacity: 1;
}
.gr-textbox {
color: white;
border: none;
border-radius: 4px;
padding: 10px;
}
.chatbox {
max-height: 400px;
overflow-y: auto;
margin-bottom: 20px;
}
""") as demo:
gr.Markdown(
"""
<div style="text-align: center; padding: 20px;">
<h1>🌙 eliAI Text Generation Interface</h1>
<h3>Model: Phi-3-mini-4k-instruct</h3>
<h4>Developed by Daniel Zurmühle</h4>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
user_text = gr.Textbox(placeholder="Enter your question here", label="User Input", lines=3, elem_classes="gr-textbox")
button_submit = gr.Button(value="Submit", elem_classes="gr-button")
max_new_tokens = gr.Slider(minimum=1, maximum=1000, value=1000, step=1, label="Max New Tokens")
top_p = gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)")
top_k = gr.Slider(minimum=1, maximum=50, value=50, step=1, label="Top-k")
temperature = gr.Slider(minimum=0.1, maximum=5.0, value=0.8, step=0.1, label="Temperature")
with gr.Column(scale=7):
model_output = gr.Chatbot(label="Chatbot Output", height=566)
def handle_submit(text, top_p, temperature, top_k, max_new_tokens):
response = run_generation(text, top_p, temperature, top_k, max_new_tokens)
return [(text, response)]
button_submit.click(handle_submit, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
user_text.submit(handle_submit, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860)
|