eliAI_demo / app.py
zurd46's picture
Create app.py
34c466e verified
raw
history blame
5.85 kB
# Import necessary libraries
from threading import Thread
import argparse
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer, AutoModelForCausalLM
from peft import PeftConfig, PeftModel
from utils import get_device # Angenommen, diese Funktion existiert bereits
# Create the parser
parser = argparse.ArgumentParser(description='Check model usage.')
# Add the arguments
parser.add_argument('--baseonly', action='store_true',
help='A boolean switch to indicate base only mode')
# Execute the parse_args() method
args = parser.parse_args()
# Define model and adapter names, data type, and quantization type
model_name = "microsoft/Phi-3-mini-4k-instruct"
adapters_name = "zurd46/eliAI"
torch_dtype = torch.bfloat16 # Set the appropriate torch data type
# Display device and CPU thread information
device = get_device()
print("Running on device:", device)
print("CPU threads:", torch.get_num_threads())
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load base model
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype)
model.resize_token_embeddings(len(tokenizer))
# Load adapter if available and not baseonly
usingAdapter = False
if not args.baseonly:
usingAdapter = True
model = PeftModel.from_pretrained(model, adapters_name)
model.to(device)
print(f"Model {model_name} loaded successfully on {device}")
# Function to run the text generation process
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
template = "\n{}\n"
model_inputs = tokenizer(template.format(user_text) if usingAdapter else user_text, return_tensors="pt")
model_inputs = model_inputs.to(device)
# Generate text in a separate thread
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=model_inputs['input_ids'],
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=float(temperature),
top_k=top_k,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Retrieve and yield the generated text
model_output = ""
for new_text in streamer:
model_output += new_text
return model_output
# Gradio UI setup
with gr.Blocks(css="""
div.svelte-sfqy0y {
display: flex;
flex-direction: inherit;
flex-wrap: wrap;
gap: var(--form-gap-width);
box-shadow: var(--block-shadow);
border: var(--block-border-width) solid var(--border-color-primary);
border-radius: var(--block-radius);
background: var(--block-background-fill);
overflow-y: hidden;
padding: 20px;
}
body {
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
background-color: var(--body-background-fill);
color: #e0e0e0;
margin: 0;
padding: 0;
box-sizing: border-box;
}
.gradio-container {
max-width: 900px;
margin: auto;
padding: 20px;
border-radius: 8px;
box-shadow: 0 0 10px rgba(0,0,0,0.5);
background: var(--body-background-fill);
}
.gr-button {
background-color: var(--block-background-fill);
color: white;
border: none;
border-radius: 4px;
padding: 10px 24px;
cursor: pointer;
}
.gr-button:hover {
background-color: #3700b3;
}
.gr-slider input[type=range] {
-webkit-appearance: none;
width: 100%;
height: 8px;
border-radius: 5px;
background: #333;
outline: none;
opacity: 0.9;
-webkit-transition: .2s;
transition: opacity .2s;
}
.gr-slider input[type=range]:hover {
opacity: 1;
}
.gr-textbox {
background-color: var(--block-background-fill);
color: white;
border: none;
border-radius: 4px;
padding: 10px;
}
.chatbox {
max-height: 400px;
overflow-y: auto;
margin-bottom: 20px;
}
""") as demo:
gr.Markdown(
"""
<div style="text-align: center; padding: 20px;">
<h1>🌙 eliAI Text Generation Interface</h1>
<h3>Model: Phi-3-mini-4k-instruct</h3>
<h4>Developed by Daniel Zurmühle</h4>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
user_text = gr.Textbox(placeholder="Enter your question here", label="User Input", lines=3, elem_classes="gr-textbox")
button_submit = gr.Button(value="Submit", elem_classes="gr-button")
max_new_tokens = gr.Slider(minimum=1, maximum=1000, value=1000, step=1, label="Max New Tokens")
top_p = gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)")
top_k = gr.Slider(minimum=1, maximum=50, value=50, step=1, label="Top-k")
temperature = gr.Slider(minimum=0.1, maximum=5.0, value=0.8, step=0.1, label="Temperature")
with gr.Column(scale=7):
model_output = gr.Chatbot(label="Chatbot Output", height=566)
def handle_submit(text, top_p, temperature, top_k, max_new_tokens):
response = run_generation(text, top_p, temperature, top_k, max_new_tokens)
return [(text, response)]
button_submit.click(handle_submit, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
user_text.submit(handle_submit, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860)