Spaces:
Runtime error
Runtime error
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer
|
8 |
+
from peft import PeftModel
|
9 |
+
|
10 |
+
def get_device_map():
|
11 |
+
num_gpus = torch.cuda.device_count()
|
12 |
+
|
13 |
+
if num_gpus > 1:
|
14 |
+
print("More than one GPU found. Setting device_map to use CUDA device 0.")
|
15 |
+
return 'cuda:0'
|
16 |
+
else:
|
17 |
+
return 'auto'
|
18 |
+
|
19 |
+
def check_adapter_path(adapters_name):
|
20 |
+
"""
|
21 |
+
Checks if the adapter path is correctly set and not a placeholder.
|
22 |
+
Args:
|
23 |
+
adapters_name (str): The file path for the adapters.
|
24 |
+
Raises:
|
25 |
+
ValueError: If the adapters_name contains placeholder characters.
|
26 |
+
"""
|
27 |
+
if '<' in adapters_name or '>' in adapters_name:
|
28 |
+
raise ValueError("The adapter path has not been set correctly.")
|
29 |
+
|
30 |
+
def load_tokenizer(model_name):
|
31 |
+
"""
|
32 |
+
Loads and returns a tokenizer for the specified model.
|
33 |
+
Args:
|
34 |
+
model_name (str): The name of the model for which to load the tokenizer.
|
35 |
+
Returns:
|
36 |
+
AutoTokenizer: The loaded tokenizer with special tokens added and padding side set.
|
37 |
+
"""
|
38 |
+
tok = AutoTokenizer.from_pretrained(model_name, device_map=get_device_map(), trust_remote_code=True)
|
39 |
+
tok.add_special_tokens({'pad_token': '[PAD]'})
|
40 |
+
tok.padding_side = 'right' # TRL requires right padding
|
41 |
+
return tok
|
42 |
+
|
43 |
+
def load_model(model_name, torch_dtype, quant_type):
|
44 |
+
"""
|
45 |
+
Loads and returns a model with the specified quantization configuration.
|
46 |
+
If more than one GPU is available, wraps the model with DataParallel.
|
47 |
+
Args:
|
48 |
+
model_name (str): The name of the model to load.
|
49 |
+
torch_dtype (torch.dtype): The data type for model weights (e.g., torch.float16).
|
50 |
+
quant_type (str): The quantization type to use.
|
51 |
+
Returns:
|
52 |
+
AutoModelForCausalLM: The loaded model possibly wrapped with DataParallel.
|
53 |
+
"""
|
54 |
+
try:
|
55 |
+
model = AutoModelForCausalLM.from_pretrained(
|
56 |
+
pretrained_model_name_or_path=model_name,
|
57 |
+
trust_remote_code=True,
|
58 |
+
device_map=get_device_map(),
|
59 |
+
torch_dtype=torch_dtype,
|
60 |
+
quantization_config=BitsAndBytesConfig(
|
61 |
+
load_in_4bit=True,
|
62 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
63 |
+
bnb_4bit_use_double_quant=True,
|
64 |
+
bnb_4bit_quant_type=quant_type
|
65 |
+
),
|
66 |
+
)
|
67 |
+
|
68 |
+
return model
|
69 |
+
except Exception as e:
|
70 |
+
raise RuntimeError(f"Error loading model: {e}")
|
71 |
+
|
72 |
+
def resize_embeddings(model, tokenizer):
|
73 |
+
"""
|
74 |
+
Resizes the token embeddings in the model to account for new tokens.
|
75 |
+
Args:
|
76 |
+
model (AutoModelForCausalLM): The model whose token embeddings will be resized.
|
77 |
+
tokenizer (AutoTokenizer): The tokenizer corresponding to the model.
|
78 |
+
"""
|
79 |
+
model.resize_token_embeddings(len(tokenizer))
|
80 |
+
|
81 |
+
def load_peft_model(model, adapters_name):
|
82 |
+
"""
|
83 |
+
Loads the PEFT model from the pretrained model and specified adapters.
|
84 |
+
Args:
|
85 |
+
model (AutoModelForCausalLM): The base model.
|
86 |
+
adapters_name (str): Path to the adapters file.
|
87 |
+
Returns:
|
88 |
+
PeftModel: The PEFT model with the loaded adapters.
|
89 |
+
"""
|
90 |
+
return PeftModel.from_pretrained(model, adapters_name)
|
91 |
+
|
92 |
+
def get_device():
|
93 |
+
"""
|
94 |
+
Determines and returns the device to use for computations.
|
95 |
+
If CUDA is available, returns a CUDA device, otherwise returns a CPU device.
|
96 |
+
Prints the number of GPUs available if CUDA is used.
|
97 |
+
Returns:
|
98 |
+
torch.device: The device to use.
|
99 |
+
"""
|
100 |
+
if torch.cuda.is_available():
|
101 |
+
device = torch.device("cuda")
|
102 |
+
print(f"Number of GPUs available: {torch.cuda.device_count()}")
|
103 |
+
else:
|
104 |
+
device = torch.device("cpu")
|
105 |
+
return device
|
106 |
+
|
107 |
+
def run_prompt(model, tokenizer, device, template):
|
108 |
+
"""
|
109 |
+
Runs an interactive prompt where the user can enter text to get generated responses.
|
110 |
+
Continues to prompt the user for input until '#end' is entered.
|
111 |
+
Args:
|
112 |
+
model (AutoModelForCausalLM): The model to use for text generation.
|
113 |
+
tokenizer (AutoTokenizer): The tokenizer to use for encoding the input text.
|
114 |
+
device (torch.device): The device on which to perform the computation.
|
115 |
+
template (str): The template string to format the input text.
|
116 |
+
"""
|
117 |
+
while True:
|
118 |
+
new_input = input("Enter your text (type #end to stop): ")
|
119 |
+
if new_input == "#end":
|
120 |
+
break
|
121 |
+
|
122 |
+
try:
|
123 |
+
_ = generate_text(model, tokenizer, device, new_input, template)
|
124 |
+
except Exception as e:
|
125 |
+
print(f"An error occurred during text generation: {e}")
|
126 |
+
|
127 |
+
def generate_text(model, tokenizer, device, input_text, template):
|
128 |
+
"""
|
129 |
+
Generates and returns text using the provided model and tokenizer for the input text.
|
130 |
+
Args:
|
131 |
+
model (AutoModelForCausalLM): The model to use for text generation.
|
132 |
+
tokenizer (AutoTokenizer): The tokenizer to use for encoding the input text.
|
133 |
+
device (torch.device): The device on which to perform the computation.
|
134 |
+
input_text (str): The input text to generate responses for.
|
135 |
+
template (str): The template string to format the input text.
|
136 |
+
Returns:
|
137 |
+
torch.Tensor: The generated text tensor.
|
138 |
+
"""
|
139 |
+
inputs = tokenizer(template.format(input_text), return_tensors="pt")
|
140 |
+
inputs = inputs.to(device) # Move input tensors to the device
|
141 |
+
streamer = TextStreamer(tokenizer)
|
142 |
+
return model.generate(**inputs, streamer=streamer,
|
143 |
+
max_new_tokens=1024,
|
144 |
+
pad_token_id=tokenizer.pad_token_id,
|
145 |
+
eos_token_id=tokenizer.eos_token_id)
|
146 |
+
|
147 |
+
def get_last_folder_alphabetically(directory_path):
|
148 |
+
"""
|
149 |
+
Finds the last folder alphabetically in a specified directory.
|
150 |
+
|
151 |
+
Args:
|
152 |
+
directory_path (str): The path to the directory.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
str: The path to the last folder found alphabetically.
|
156 |
+
If the directory does not exist or contains no folders, a descriptive string is returned.
|
157 |
+
"""
|
158 |
+
if not os.path.exists(directory_path):
|
159 |
+
return "Directory does not exist."
|
160 |
+
|
161 |
+
all_files_and_folders = os.listdir(directory_path)
|
162 |
+
only_folders = [f for f in all_files_and_folders if os.path.isdir(os.path.join(directory_path, f))]
|
163 |
+
if not only_folders:
|
164 |
+
return "No folders found in the directory."
|
165 |
+
|
166 |
+
only_folders.sort(key=natural_sort_key)
|
167 |
+
last_folder = only_folders[-1]
|
168 |
+
return os.path.join(directory_path, last_folder)
|
169 |
+
|
170 |
+
def natural_sort_key(s):
|
171 |
+
"""
|
172 |
+
Generates a key for sorting strings that contain numbers where the numbers should be sorted numerically,
|
173 |
+
and the rest alphabetically.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
s (str): The string to be sorted.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
list: A list of strings and integers derived from the input string.
|
180 |
+
"""
|
181 |
+
return [int(text) if text.isdigit() else text.lower() for text in re.split('([0-9]+)', s)]
|