# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import re import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer from peft import PeftModel def get_device_map(): num_gpus = torch.cuda.device_count() if num_gpus > 1: print("More than one GPU found. Setting device_map to use CUDA device 0.") return 'cuda:0' else: return 'auto' def check_adapter_path(adapters_name): """ Checks if the adapter path is correctly set and not a placeholder. Args: adapters_name (str): The file path for the adapters. Raises: ValueError: If the adapters_name contains placeholder characters. """ if '<' in adapters_name or '>' in adapters_name: raise ValueError("The adapter path has not been set correctly.") def load_tokenizer(model_name): """ Loads and returns a tokenizer for the specified model. Args: model_name (str): The name of the model for which to load the tokenizer. Returns: AutoTokenizer: The loaded tokenizer with special tokens added and padding side set. """ tok = AutoTokenizer.from_pretrained(model_name, device_map=get_device_map(), trust_remote_code=True) tok.add_special_tokens({'pad_token': '[PAD]'}) tok.padding_side = 'right' # TRL requires right padding return tok def load_model(model_name, torch_dtype, quant_type): """ Loads and returns a model with the specified quantization configuration. If more than one GPU is available, wraps the model with DataParallel. Args: model_name (str): The name of the model to load. torch_dtype (torch.dtype): The data type for model weights (e.g., torch.float16). quant_type (str): The quantization type to use. Returns: AutoModelForCausalLM: The loaded model possibly wrapped with DataParallel. """ try: model = AutoModelForCausalLM.from_pretrained( pretrained_model_name_or_path=model_name, trust_remote_code=True, device_map=get_device_map(), torch_dtype=torch_dtype, quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch_dtype, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type=quant_type ), ) return model except Exception as e: raise RuntimeError(f"Error loading model: {e}") def resize_embeddings(model, tokenizer): """ Resizes the token embeddings in the model to account for new tokens. Args: model (AutoModelForCausalLM): The model whose token embeddings will be resized. tokenizer (AutoTokenizer): The tokenizer corresponding to the model. """ model.resize_token_embeddings(len(tokenizer)) def load_peft_model(model, adapters_name): """ Loads the PEFT model from the pretrained model and specified adapters. Args: model (AutoModelForCausalLM): The base model. adapters_name (str): Path to the adapters file. Returns: PeftModel: The PEFT model with the loaded adapters. """ return PeftModel.from_pretrained(model, adapters_name) def get_device(): """ Determines and returns the device to use for computations. If CUDA is available, returns a CUDA device, otherwise returns a CPU device. Prints the number of GPUs available if CUDA is used. Returns: torch.device: The device to use. """ if torch.cuda.is_available(): device = torch.device("cuda") print(f"Number of GPUs available: {torch.cuda.device_count()}") else: device = torch.device("cpu") return device def run_prompt(model, tokenizer, device, template): """ Runs an interactive prompt where the user can enter text to get generated responses. Continues to prompt the user for input until '#end' is entered. Args: model (AutoModelForCausalLM): The model to use for text generation. tokenizer (AutoTokenizer): The tokenizer to use for encoding the input text. device (torch.device): The device on which to perform the computation. template (str): The template string to format the input text. """ while True: new_input = input("Enter your text (type #end to stop): ") if new_input == "#end": break try: _ = generate_text(model, tokenizer, device, new_input, template) except Exception as e: print(f"An error occurred during text generation: {e}") def generate_text(model, tokenizer, device, input_text, template): """ Generates and returns text using the provided model and tokenizer for the input text. Args: model (AutoModelForCausalLM): The model to use for text generation. tokenizer (AutoTokenizer): The tokenizer to use for encoding the input text. device (torch.device): The device on which to perform the computation. input_text (str): The input text to generate responses for. template (str): The template string to format the input text. Returns: torch.Tensor: The generated text tensor. """ inputs = tokenizer(template.format(input_text), return_tensors="pt") inputs = inputs.to(device) # Move input tensors to the device streamer = TextStreamer(tokenizer) return model.generate(**inputs, streamer=streamer, max_new_tokens=1024, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id) def get_last_folder_alphabetically(directory_path): """ Finds the last folder alphabetically in a specified directory. Args: directory_path (str): The path to the directory. Returns: str: The path to the last folder found alphabetically. If the directory does not exist or contains no folders, a descriptive string is returned. """ if not os.path.exists(directory_path): return "Directory does not exist." all_files_and_folders = os.listdir(directory_path) only_folders = [f for f in all_files_and_folders if os.path.isdir(os.path.join(directory_path, f))] if not only_folders: return "No folders found in the directory." only_folders.sort(key=natural_sort_key) last_folder = only_folders[-1] return os.path.join(directory_path, last_folder) def natural_sort_key(s): """ Generates a key for sorting strings that contain numbers where the numbers should be sorted numerically, and the rest alphabetically. Args: s (str): The string to be sorted. Returns: list: A list of strings and integers derived from the input string. """ return [int(text) if text.isdigit() else text.lower() for text in re.split('([0-9]+)', s)]