zxcgqq commited on
Commit
90f58ba
1 Parent(s): 9ceef03

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -32
app.py CHANGED
@@ -13,46 +13,54 @@ import tensorflow_hub as hub
13
  IMAGE_DIM = 299 # required/default image dimensionality
14
  model = tf.keras.models.load_model("nsfw.299x299.h5", custom_objects={'KerasLayer': hub.KerasLayer},compile=False)
15
 
16
- def load_images(image_paths, image_size, verbose=True):
17
- '''
18
- Function for loading images into numpy arrays for passing to model.predict
19
- inputs:
20
- image_paths: list of image paths to load
21
- image_size: size into which images should be resized
22
- verbose: show all of the image path and sizes loaded
23
 
24
- outputs:
25
- loaded_images: loaded images on which keras model can run predictions
26
- loaded_image_indexes: paths of images which the function is able to process
27
 
28
- '''
29
- loaded_images = []
30
- loaded_image_paths = []
31
 
32
- if isdir(image_paths):
33
- parent = abspath(image_paths)
34
- image_paths = [join(parent, f) for f in listdir(image_paths) if isfile(join(parent, f))]
35
- elif isfile(image_paths):
36
- image_paths = [image_paths]
37
 
38
- for img_path in image_paths:
39
- try:
40
- if verbose:
41
- print(img_path, "size:", image_size)
42
- image = keras.preprocessing.image.load_img(img_path, target_size=image_size)
43
- image = keras.preprocessing.image.img_to_array(image)
44
- image /= 255
45
- image
46
- loaded_images.append(image)
47
- loaded_image_paths.append(img_path)
48
- except Exception as ex:
49
- print("Image Load Failure: ", img_path, ex)
50
 
 
 
 
 
 
 
 
 
51
  return np.asarray(loaded_images)
52
 
53
  def classify_nd(model, nd_images, predict_args={}):
54
- file_path = nd_images.filename
55
- img = load_images(file_path,(299,299))
56
  model_preds = model.predict(img, **predict_args)
57
  categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
58
 
 
13
  IMAGE_DIM = 299 # required/default image dimensionality
14
  model = tf.keras.models.load_model("nsfw.299x299.h5", custom_objects={'KerasLayer': hub.KerasLayer},compile=False)
15
 
16
+ # def load_images(image_paths, image_size, verbose=True):
17
+ # '''
18
+ # Function for loading images into numpy arrays for passing to model.predict
19
+ # inputs:
20
+ # image_paths: list of image paths to load
21
+ # image_size: size into which images should be resized
22
+ # verbose: show all of the image path and sizes loaded
23
 
24
+ # outputs:
25
+ # loaded_images: loaded images on which keras model can run predictions
26
+ # loaded_image_indexes: paths of images which the function is able to process
27
 
28
+ # '''
29
+ # loaded_images = []
30
+ # loaded_image_paths = []
31
 
32
+ # if isdir(image_paths):
33
+ # parent = abspath(image_paths)
34
+ # image_paths = [join(parent, f) for f in listdir(image_paths) if isfile(join(parent, f))]
35
+ # elif isfile(image_paths):
36
+ # image_paths = [image_paths]
37
 
38
+ # for img_path in image_paths:
39
+ # try:
40
+ # if verbose:
41
+ # print(img_path, "size:", image_size)
42
+ # image = keras.preprocessing.image.load_img(img_path, target_size=image_size)
43
+ # image = keras.preprocessing.image.img_to_array(image)
44
+ # image /= 255
45
+ # image
46
+ # loaded_images.append(image)
47
+ # loaded_image_paths.append(img_path)
48
+ # except Exception as ex:
49
+ # print("Image Load Failure: ", img_path, ex)
50
 
51
+ # return np.asarray(loaded_images)
52
+ def load_images(image):
53
+ loaded_images = []
54
+ image = keras.preprocessing.image.array_to_img(image)
55
+ image = image.resize((299, 299))
56
+ image = keras.preprocessing.image.img_to_array(image)
57
+ image /= 255
58
+ loaded_images.append(image)
59
  return np.asarray(loaded_images)
60
 
61
  def classify_nd(model, nd_images, predict_args={}):
62
+ # file_path = nd_images.filename
63
+ img = load_images(nd_images)
64
  model_preds = model.predict(img, **predict_args)
65
  categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
66