Spaces:
Running
on
A10G
Running
on
A10G
File size: 5,587 Bytes
f2a2544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
"""
R: (N, 3, 3)
T: (N, 3)
E: (N, 4, 4)
vector: (N, 3)
"""
def compose_extrinsic_R_T(R: torch.Tensor, T: torch.Tensor):
"""
Compose the standard form extrinsic matrix from R and T.
Batched I/O.
"""
RT = torch.cat((R, T.unsqueeze(-1)), dim=-1)
return compose_extrinsic_RT(RT)
def compose_extrinsic_RT(RT: torch.Tensor):
"""
Compose the standard form extrinsic matrix from RT.
Batched I/O.
"""
return torch.cat([
RT,
torch.tensor([[[0, 0, 0, 1]]], dtype=RT.dtype, device=RT.device).repeat(RT.shape[0], 1, 1)
], dim=1)
def decompose_extrinsic_R_T(E: torch.Tensor):
"""
Decompose the standard extrinsic matrix into R and T.
Batched I/O.
"""
RT = decompose_extrinsic_RT(E)
return RT[:, :, :3], RT[:, :, 3]
def decompose_extrinsic_RT(E: torch.Tensor):
"""
Decompose the standard extrinsic matrix into RT.
Batched I/O.
"""
return E[:, :3, :]
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
"""
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
Return batched fx, fy, cx, cy
"""
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
fx, fy = fx / width, fy / height
cx, cy = cx / width, cy / height
return fx, fy, cx, cy
def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
"""
RT: (N, 3, 4)
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
"""
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
return torch.cat([
RT.reshape(-1, 12),
fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
], dim=-1)
def build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor):
"""
RT: (N, 3, 4)
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
"""
E = compose_extrinsic_RT(RT)
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
I = torch.stack([
torch.stack([fx, torch.zeros_like(fx), cx], dim=-1),
torch.stack([torch.zeros_like(fy), fy, cy], dim=-1),
torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1),
], dim=1)
return torch.cat([
E.reshape(-1, 16),
I.reshape(-1, 9),
], dim=-1)
def center_looking_at_camera_pose(
camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None,
device: torch.device = torch.device('cpu'),
):
"""
camera_position: (M, 3)
look_at: (3)
up_world: (3)
return: (M, 3, 4)
"""
# by default, looking at the origin and world up is pos-z
if look_at is None:
look_at = torch.tensor([0, 0, 0], dtype=torch.float32, device=device)
if up_world is None:
up_world = torch.tensor([0, 0, 1], dtype=torch.float32, device=device)
look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1)
up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1)
z_axis = camera_position - look_at
z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True)
x_axis = torch.cross(up_world, z_axis)
x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True)
y_axis = torch.cross(z_axis, x_axis)
y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True)
extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1)
return extrinsics
def surrounding_views_linspace(n_views: int, radius: float = 2.0, height: float = 0.8, device: torch.device = torch.device('cpu')):
"""
n_views: number of surrounding views
radius: camera dist to center
height: height of the camera
return: (M, 3, 4)
"""
assert n_views > 0
assert radius > 0
theta = torch.linspace(-torch.pi / 2, 3 * torch.pi / 2, n_views, device=device)
projected_radius = math.sqrt(radius ** 2 - height ** 2)
x = torch.cos(theta) * projected_radius
y = torch.sin(theta) * projected_radius
z = torch.full((n_views,), height, device=device)
camera_positions = torch.stack([x, y, z], dim=1)
extrinsics = center_looking_at_camera_pose(camera_positions, device=device)
return extrinsics
def create_intrinsics(
f: float,
c: float = None, cx: float = None, cy: float = None,
w: float = 1., h: float = 1.,
dtype: torch.dtype = torch.float32,
device: torch.device = torch.device('cpu'),
):
"""
return: (3, 2)
"""
fx = fy = f
if c is not None:
assert cx is None and cy is None, "c and cx/cy cannot be used together"
cx = cy = c
else:
assert cx is not None and cy is not None, "cx/cy must be provided when c is not provided"
fx, fy, cx, cy, w, h = fx/w, fy/h, cx/w, cy/h, 1., 1.
intrinsics = torch.tensor([
[fx, fy],
[cx, cy],
[w, h],
], dtype=dtype, device=device)
return intrinsics
|