zxsipola123456 commited on
Commit
ab2ded1
1 Parent(s): 6e7f556

Upload 769 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. agent/README.md +45 -0
  3. agent/README_zh.md +46 -0
  4. agent/__init__.py +0 -0
  5. agent/canvas.py +302 -0
  6. agent/component/__init__.py +28 -0
  7. agent/component/answer.py +79 -0
  8. agent/component/arxiv.py +69 -0
  9. agent/component/baidu.py +69 -0
  10. agent/component/baidufanyi.py +99 -0
  11. agent/component/base.py +494 -0
  12. agent/component/begin.py +48 -0
  13. agent/component/bing.py +85 -0
  14. agent/component/categorize.py +87 -0
  15. agent/component/cite.py +75 -0
  16. agent/component/deepl.py +62 -0
  17. agent/component/duckduckgo.py +66 -0
  18. agent/component/generate.py +150 -0
  19. agent/component/github.py +61 -0
  20. agent/component/google.py +96 -0
  21. agent/component/googlescholar.py +70 -0
  22. agent/component/keyword.py +65 -0
  23. agent/component/message.py +53 -0
  24. agent/component/pubmed.py +65 -0
  25. agent/component/qweather.py +111 -0
  26. agent/component/relevant.py +80 -0
  27. agent/component/retrieval.py +88 -0
  28. agent/component/rewrite.py +72 -0
  29. agent/component/switch.py +77 -0
  30. agent/component/wikipedia.py +69 -0
  31. agent/settings.py +34 -0
  32. agent/templates/HR_callout_zh.json +0 -0
  33. agent/templates/customer_service.json +620 -0
  34. agent/templates/general_chat_bot.json +335 -0
  35. agent/templates/interpreter.json +158 -0
  36. agent/templates/websearch_assistant.json +547 -0
  37. agent/test/client.py +48 -0
  38. agent/test/dsl_examples/categorize.json +45 -0
  39. agent/test/dsl_examples/customer_service.json +157 -0
  40. agent/test/dsl_examples/headhunter_zh.json +210 -0
  41. agent/test/dsl_examples/intergreper.json +39 -0
  42. agent/test/dsl_examples/interpreter.json +39 -0
  43. agent/test/dsl_examples/keyword_wikipedia_and_generate.json +62 -0
  44. agent/test/dsl_examples/retrieval_and_generate.json +54 -0
  45. agent/test/dsl_examples/retrieval_categorize_and_generate.json +88 -0
  46. agent/test/dsl_examples/retrieval_relevant_and_generate.json +82 -0
  47. agent/test/dsl_examples/retrieval_relevant_keyword_baidu_and_generate.json +103 -0
  48. agent/test/dsl_examples/retrieval_relevant_rewrite_and_generate.json +79 -0
  49. api/__init__.py +0 -0
  50. api/apps/__init__.py +125 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ web/src/assets/svg/chunk-method/media-01.svg filter=lfs diff=lfs merge=lfs -text
agent/README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ English | [简体中文](./README_zh.md)
2
+
3
+ # *Graph*
4
+
5
+
6
+ ## Introduction
7
+
8
+ *Graph* is a mathematical concept which is composed of nodes and edges.
9
+ It is used to compose a complex work flow or agent.
10
+ And this graph is beyond the DAG that we can use circles to describe our agent or work flow.
11
+ Under this folder, we propose a test tool ./test/client.py which can test the DSLs such as json files in folder ./test/dsl_examples.
12
+ Please use this client at the same folder you start RAGFlow. If it's run by Docker, please go into the container before running the client.
13
+ Otherwise, correct configurations in conf/service_conf.yaml is essential.
14
+
15
+ ```bash
16
+ PYTHONPATH=path/to/ragflow python graph/test/client.py -h
17
+ usage: client.py [-h] -s DSL -t TENANT_ID -m
18
+
19
+ options:
20
+ -h, --help show this help message and exit
21
+ -s DSL, --dsl DSL input dsl
22
+ -t TENANT_ID, --tenant_id TENANT_ID
23
+ Tenant ID
24
+ -m, --stream Stream output
25
+ ```
26
+ <div align="center" style="margin-top:20px;margin-bottom:20px;">
27
+ <img src="https://github.com/infiniflow/ragflow/assets/12318111/79179c5e-d4d6-464a-b6c4-5721cb329899" width="1000"/>
28
+ </div>
29
+
30
+
31
+ ## How to gain a TENANT_ID in command line?
32
+ <div align="center" style="margin-top:20px;margin-bottom:20px;">
33
+ <img src="https://github.com/infiniflow/ragflow/assets/12318111/419d8588-87b1-4ab8-ac49-2d1f047a4b97" width="600"/>
34
+ </div>
35
+ 💡 We plan to display it here in the near future.
36
+ <div align="center" style="margin-top:20px;margin-bottom:20px;">
37
+ <img src="https://github.com/infiniflow/ragflow/assets/12318111/c97915de-0091-46a5-afd9-e278946e5fe3" width="600"/>
38
+ </div>
39
+
40
+
41
+ ## How to set 'kb_ids' for component 'Retrieval' in DSL?
42
+ <div align="center" style="margin-top:20px;margin-bottom:20px;">
43
+ <img src="https://github.com/infiniflow/ragflow/assets/12318111/0a731534-cac8-49fd-8a92-ca247eeef66d" width="600"/>
44
+ </div>
45
+
agent/README_zh.md ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [English](./README.md) | 简体中文
2
+
3
+ # *Graph*
4
+
5
+
6
+ ## 简介
7
+
8
+ "Graph"是一个由节点和边组成的数学概念。
9
+ 它被用来构建复杂的工作流或代理。
10
+ 这个图超越了有向无环图(DAG),我们可以使用循环来描述我们的代理或工作流。
11
+ 在这个文件夹下,我们提出了一个测试工具 ./test/client.py,
12
+ 它可以测试像文件夹./test/dsl_examples下一样的DSL文件。
13
+ 请在启动 RAGFlow 的同一文件夹中使用此客户端。如果它是通过 Docker 运行的,请在运行客户端之前进入容器。
14
+ 否则,正确配置 conf/service_conf.yaml 文件是必不可少的。
15
+
16
+ ```bash
17
+ PYTHONPATH=path/to/ragflow python graph/test/client.py -h
18
+ usage: client.py [-h] -s DSL -t TENANT_ID -m
19
+
20
+ options:
21
+ -h, --help show this help message and exit
22
+ -s DSL, --dsl DSL input dsl
23
+ -t TENANT_ID, --tenant_id TENANT_ID
24
+ Tenant ID
25
+ -m, --stream Stream output
26
+ ```
27
+ <div align="center" style="margin-top:20px;margin-bottom:20px;">
28
+ <img src="https://github.com/infiniflow/ragflow/assets/12318111/05924730-c427-495b-8ee4-90b8b2250681" width="1000"/>
29
+ </div>
30
+
31
+
32
+ ## 命令行中的TENANT_ID如何获得?
33
+ <div align="center" style="margin-top:20px;margin-bottom:20px;">
34
+ <img src="https://github.com/infiniflow/ragflow/assets/12318111/419d8588-87b1-4ab8-ac49-2d1f047a4b97" width="600"/>
35
+ </div>
36
+ 💡 后面会展示在这里:
37
+ <div align="center" style="margin-top:20px;margin-bottom:20px;">
38
+ <img src="https://github.com/infiniflow/ragflow/assets/12318111/c97915de-0091-46a5-afd9-e278946e5fe3" width="600"/>
39
+ </div>
40
+
41
+
42
+ ## DSL里面的Retrieval组件的kb_ids怎么填?
43
+ <div align="center" style="margin-top:20px;margin-bottom:20px;">
44
+ <img src="https://github.com/infiniflow/ragflow/assets/12318111/0a731534-cac8-49fd-8a92-ca247eeef66d" width="600"/>
45
+ </div>
46
+
agent/__init__.py ADDED
File without changes
agent/canvas.py ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ import importlib
17
+ import json
18
+ import traceback
19
+ from abc import ABC
20
+ from copy import deepcopy
21
+ from functools import partial
22
+
23
+ import pandas as pd
24
+
25
+ from agent.component import component_class
26
+ from agent.component.base import ComponentBase
27
+ from agent.settings import flow_logger, DEBUG
28
+
29
+
30
+ class Canvas(ABC):
31
+ """
32
+ dsl = {
33
+ "components": {
34
+ "begin": {
35
+ "obj":{
36
+ "component_name": "Begin",
37
+ "params": {},
38
+ },
39
+ "downstream": ["answer_0"],
40
+ "upstream": [],
41
+ },
42
+ "answer_0": {
43
+ "obj": {
44
+ "component_name": "Answer",
45
+ "params": {}
46
+ },
47
+ "downstream": ["retrieval_0"],
48
+ "upstream": ["begin", "generate_0"],
49
+ },
50
+ "retrieval_0": {
51
+ "obj": {
52
+ "component_name": "Retrieval",
53
+ "params": {}
54
+ },
55
+ "downstream": ["generate_0"],
56
+ "upstream": ["answer_0"],
57
+ },
58
+ "generate_0": {
59
+ "obj": {
60
+ "component_name": "Generate",
61
+ "params": {}
62
+ },
63
+ "downstream": ["answer_0"],
64
+ "upstream": ["retrieval_0"],
65
+ }
66
+ },
67
+ "history": [],
68
+ "messages": [],
69
+ "reference": [],
70
+ "path": [["begin"]],
71
+ "answer": []
72
+ }
73
+ """
74
+
75
+ def __init__(self, dsl: str, tenant_id=None):
76
+ self.path = []
77
+ self.history = []
78
+ self.messages = []
79
+ self.answer = []
80
+ self.components = {}
81
+ self.dsl = json.loads(dsl) if dsl else {
82
+ "components": {
83
+ "begin": {
84
+ "obj": {
85
+ "component_name": "Begin",
86
+ "params": {
87
+ "prologue": "Hi there!"
88
+ }
89
+ },
90
+ "downstream": [],
91
+ "upstream": []
92
+ }
93
+ },
94
+ "history": [],
95
+ "messages": [],
96
+ "reference": [],
97
+ "path": [],
98
+ "answer": []
99
+ }
100
+ self._tenant_id = tenant_id
101
+ self._embed_id = ""
102
+ self.load()
103
+
104
+ def load(self):
105
+ self.components = self.dsl["components"]
106
+ cpn_nms = set([])
107
+ for k, cpn in self.components.items():
108
+ cpn_nms.add(cpn["obj"]["component_name"])
109
+
110
+ assert "Begin" in cpn_nms, "There have to be an 'Begin' component."
111
+ assert "Answer" in cpn_nms, "There have to be an 'Answer' component."
112
+
113
+ for k, cpn in self.components.items():
114
+ cpn_nms.add(cpn["obj"]["component_name"])
115
+ param = component_class(cpn["obj"]["component_name"] + "Param")()
116
+ param.update(cpn["obj"]["params"])
117
+ param.check()
118
+ cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
119
+ if cpn["obj"].component_name == "Categorize":
120
+ for _, desc in param.category_description.items():
121
+ if desc["to"] not in cpn["downstream"]:
122
+ cpn["downstream"].append(desc["to"])
123
+
124
+ self.path = self.dsl["path"]
125
+ self.history = self.dsl["history"]
126
+ self.messages = self.dsl["messages"]
127
+ self.answer = self.dsl["answer"]
128
+ self.reference = self.dsl["reference"]
129
+ self._embed_id = self.dsl.get("embed_id", "")
130
+
131
+ def __str__(self):
132
+ self.dsl["path"] = self.path
133
+ self.dsl["history"] = self.history
134
+ self.dsl["messages"] = self.messages
135
+ self.dsl["answer"] = self.answer
136
+ self.dsl["reference"] = self.reference
137
+ self.dsl["embed_id"] = self._embed_id
138
+ dsl = {
139
+ "components": {}
140
+ }
141
+ for k in self.dsl.keys():
142
+ if k in ["components"]:continue
143
+ dsl[k] = deepcopy(self.dsl[k])
144
+
145
+ for k, cpn in self.components.items():
146
+ if k not in dsl["components"]:
147
+ dsl["components"][k] = {}
148
+ for c in cpn.keys():
149
+ if c == "obj":
150
+ dsl["components"][k][c] = json.loads(str(cpn["obj"]))
151
+ continue
152
+ dsl["components"][k][c] = deepcopy(cpn[c])
153
+ return json.dumps(dsl, ensure_ascii=False)
154
+
155
+ def reset(self):
156
+ self.path = []
157
+ self.history = []
158
+ self.messages = []
159
+ self.answer = []
160
+ self.reference = []
161
+ for k, cpn in self.components.items():
162
+ self.components[k]["obj"].reset()
163
+ self._embed_id = ""
164
+
165
+ def run(self, **kwargs):
166
+ ans = ""
167
+ if self.answer:
168
+ cpn_id = self.answer[0]
169
+ self.answer.pop(0)
170
+ try:
171
+ ans = self.components[cpn_id]["obj"].run(self.history, **kwargs)
172
+ except Exception as e:
173
+ ans = ComponentBase.be_output(str(e))
174
+ self.path[-1].append(cpn_id)
175
+ if kwargs.get("stream"):
176
+ assert isinstance(ans, partial)
177
+ return ans
178
+ self.history.append(("assistant", ans.to_dict("records")))
179
+ return ans
180
+
181
+ if not self.path:
182
+ self.components["begin"]["obj"].run(self.history, **kwargs)
183
+ self.path.append(["begin"])
184
+
185
+ self.path.append([])
186
+ ran = -1
187
+
188
+ def prepare2run(cpns):
189
+ nonlocal ran, ans
190
+ for c in cpns:
191
+ if self.path[-1] and c == self.path[-1][-1]: continue
192
+ cpn = self.components[c]["obj"]
193
+ if cpn.component_name == "Answer":
194
+ self.answer.append(c)
195
+ else:
196
+ if DEBUG: print("RUN: ", c)
197
+ if cpn.component_name == "Generate":
198
+ cpids = cpn.get_dependent_components()
199
+ if any([c not in self.path[-1] for c in cpids]):
200
+ continue
201
+ ans = cpn.run(self.history, **kwargs)
202
+ self.path[-1].append(c)
203
+ ran += 1
204
+
205
+ prepare2run(self.components[self.path[-2][-1]]["downstream"])
206
+ while 0 <= ran < len(self.path[-1]):
207
+ if DEBUG: print(ran, self.path)
208
+ cpn_id = self.path[-1][ran]
209
+ cpn = self.get_component(cpn_id)
210
+ if not cpn["downstream"]: break
211
+
212
+ loop = self._find_loop()
213
+ if loop: raise OverflowError(f"Too much loops: {loop}")
214
+
215
+ if cpn["obj"].component_name.lower() in ["switch", "categorize", "relevant"]:
216
+ switch_out = cpn["obj"].output()[1].iloc[0, 0]
217
+ assert switch_out in self.components, \
218
+ "{}'s output: {} not valid.".format(cpn_id, switch_out)
219
+ try:
220
+ prepare2run([switch_out])
221
+ except Exception as e:
222
+ for p in [c for p in self.path for c in p][::-1]:
223
+ if p.lower().find("answer") >= 0:
224
+ self.get_component(p)["obj"].set_exception(e)
225
+ prepare2run([p])
226
+ break
227
+ traceback.print_exc()
228
+ break
229
+ continue
230
+
231
+ try:
232
+ prepare2run(cpn["downstream"])
233
+ except Exception as e:
234
+ for p in [c for p in self.path for c in p][::-1]:
235
+ if p.lower().find("answer") >= 0:
236
+ self.get_component(p)["obj"].set_exception(e)
237
+ prepare2run([p])
238
+ break
239
+ traceback.print_exc()
240
+ break
241
+
242
+ if self.answer:
243
+ cpn_id = self.answer[0]
244
+ self.answer.pop(0)
245
+ ans = self.components[cpn_id]["obj"].run(self.history, **kwargs)
246
+ self.path[-1].append(cpn_id)
247
+ if kwargs.get("stream"):
248
+ assert isinstance(ans, partial)
249
+ return ans
250
+
251
+ self.history.append(("assistant", ans.to_dict("records")))
252
+
253
+ return ans
254
+
255
+ def get_component(self, cpn_id):
256
+ return self.components[cpn_id]
257
+
258
+ def get_tenant_id(self):
259
+ return self._tenant_id
260
+
261
+ def get_history(self, window_size):
262
+ convs = []
263
+ for role, obj in self.history[window_size * -2:]:
264
+ convs.append({"role": role, "content": (obj if role == "user" else
265
+ '\n'.join(pd.DataFrame(obj)['content']))})
266
+ return convs
267
+
268
+ def add_user_input(self, question):
269
+ self.history.append(("user", question))
270
+
271
+ def set_embedding_model(self, embed_id):
272
+ self._embed_id = embed_id
273
+
274
+ def get_embedding_model(self):
275
+ return self._embed_id
276
+
277
+ def _find_loop(self, max_loops=2):
278
+ path = self.path[-1][::-1]
279
+ if len(path) < 2: return False
280
+
281
+ for i in range(len(path)):
282
+ if path[i].lower().find("answer") >= 0:
283
+ path = path[:i]
284
+ break
285
+
286
+ if len(path) < 2: return False
287
+
288
+ for l in range(2, len(path) // 2):
289
+ pat = ",".join(path[0:l])
290
+ path_str = ",".join(path)
291
+ if len(pat) >= len(path_str): return False
292
+ loop = max_loops
293
+ while path_str.find(pat) == 0 and loop >= 0:
294
+ loop -= 1
295
+ if len(pat)+1 >= len(path_str):
296
+ return False
297
+ path_str = path_str[len(pat)+1:]
298
+ if loop < 0:
299
+ pat = " => ".join([p.split(":")[0] for p in path[0:l]])
300
+ return pat + " => " + pat
301
+
302
+ return False
agent/component/__init__.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from .begin import Begin, BeginParam
3
+ from .generate import Generate, GenerateParam
4
+ from .retrieval import Retrieval, RetrievalParam
5
+ from .answer import Answer, AnswerParam
6
+ from .categorize import Categorize, CategorizeParam
7
+ from .switch import Switch, SwitchParam
8
+ from .relevant import Relevant, RelevantParam
9
+ from .message import Message, MessageParam
10
+ from .rewrite import RewriteQuestion, RewriteQuestionParam
11
+ from .keyword import KeywordExtract, KeywordExtractParam
12
+ from .baidu import Baidu, BaiduParam
13
+ from .duckduckgo import DuckDuckGo, DuckDuckGoParam
14
+ from .wikipedia import Wikipedia, WikipediaParam
15
+ from .pubmed import PubMed, PubMedParam
16
+ from .arxiv import ArXiv, ArXivParam
17
+ from .google import Google, GoogleParam
18
+ from .bing import Bing, BingParam
19
+ from .googlescholar import GoogleScholar, GoogleScholarParam
20
+ from .deepl import DeepL, DeepLParam
21
+ from .github import GitHub, GitHubParam
22
+ from .baidufanyi import BaiduFanyi, BaiduFanyiParam
23
+ from .qweather import QWeather, QWeatherParam
24
+
25
+ def component_class(class_name):
26
+ m = importlib.import_module("agent.component")
27
+ c = getattr(m, class_name)
28
+ return c
agent/component/answer.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ import random
17
+ from abc import ABC
18
+ from functools import partial
19
+
20
+ import pandas as pd
21
+
22
+ from agent.component.base import ComponentBase, ComponentParamBase
23
+
24
+
25
+ class AnswerParam(ComponentParamBase):
26
+
27
+ """
28
+ Define the Answer component parameters.
29
+ """
30
+ def __init__(self):
31
+ super().__init__()
32
+ self.post_answers = []
33
+
34
+ def check(self):
35
+ return True
36
+
37
+
38
+ class Answer(ComponentBase, ABC):
39
+ component_name = "Answer"
40
+
41
+ def _run(self, history, **kwargs):
42
+ if kwargs.get("stream"):
43
+ return partial(self.stream_output)
44
+
45
+ ans = self.get_input()
46
+ if self._param.post_answers:
47
+ ans = pd.concat([ans, pd.DataFrame([{"content": random.choice(self._param.post_answers)}])], ignore_index=False)
48
+ return ans
49
+
50
+ def stream_output(self):
51
+ res = None
52
+ if hasattr(self, "exception") and self.exception:
53
+ res = {"content": str(self.exception)}
54
+ self.exception = None
55
+ yield res
56
+ self.set_output(res)
57
+ return
58
+
59
+ stream = self.get_stream_input()
60
+ if isinstance(stream, pd.DataFrame):
61
+ res = stream
62
+ answer = ""
63
+ for ii, row in stream.iterrows():
64
+ answer += row.to_dict()["content"]
65
+ yield {"content": answer}
66
+ else:
67
+ for st in stream():
68
+ res = st
69
+ yield st
70
+ if self._param.post_answers:
71
+ res["content"] += random.choice(self._param.post_answers)
72
+ yield res
73
+
74
+ self.set_output(res)
75
+
76
+ def set_exception(self, e):
77
+ self.exception = e
78
+
79
+
agent/component/arxiv.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ import arxiv
18
+ import pandas as pd
19
+ from agent.settings import DEBUG
20
+ from agent.component.base import ComponentBase, ComponentParamBase
21
+
22
+
23
+ class ArXivParam(ComponentParamBase):
24
+ """
25
+ Define the ArXiv component parameters.
26
+ """
27
+
28
+ def __init__(self):
29
+ super().__init__()
30
+ self.top_n = 6
31
+ self.sort_by = 'submittedDate'
32
+
33
+ def check(self):
34
+ self.check_positive_integer(self.top_n, "Top N")
35
+ self.check_valid_value(self.sort_by, "ArXiv Search Sort_by",
36
+ ['submittedDate', 'lastUpdatedDate', 'relevance'])
37
+
38
+
39
+ class ArXiv(ComponentBase, ABC):
40
+ component_name = "ArXiv"
41
+
42
+ def _run(self, history, **kwargs):
43
+ ans = self.get_input()
44
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
45
+ if not ans:
46
+ return ArXiv.be_output("")
47
+
48
+ try:
49
+ sort_choices = {"relevance": arxiv.SortCriterion.Relevance,
50
+ "lastUpdatedDate": arxiv.SortCriterion.LastUpdatedDate,
51
+ 'submittedDate': arxiv.SortCriterion.SubmittedDate}
52
+ arxiv_client = arxiv.Client()
53
+ search = arxiv.Search(
54
+ query=ans,
55
+ max_results=self._param.top_n,
56
+ sort_by=sort_choices[self._param.sort_by]
57
+ )
58
+ arxiv_res = [
59
+ {"content": 'Title: ' + i.title + '\nPdf_Url: <a href="' + i.pdf_url + '"></a> \nSummary: ' + i.summary} for
60
+ i in list(arxiv_client.results(search))]
61
+ except Exception as e:
62
+ return ArXiv.be_output("**ERROR**: " + str(e))
63
+
64
+ if not arxiv_res:
65
+ return ArXiv.be_output("")
66
+
67
+ df = pd.DataFrame(arxiv_res)
68
+ if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
69
+ return df
agent/component/baidu.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ import random
17
+ from abc import ABC
18
+ from functools import partial
19
+ import pandas as pd
20
+ import requests
21
+ import re
22
+ from agent.settings import DEBUG
23
+ from agent.component.base import ComponentBase, ComponentParamBase
24
+
25
+
26
+ class BaiduParam(ComponentParamBase):
27
+ """
28
+ Define the Baidu component parameters.
29
+ """
30
+
31
+ def __init__(self):
32
+ super().__init__()
33
+ self.top_n = 10
34
+
35
+ def check(self):
36
+ self.check_positive_integer(self.top_n, "Top N")
37
+
38
+
39
+ class Baidu(ComponentBase, ABC):
40
+ component_name = "Baidu"
41
+
42
+ def _run(self, history, **kwargs):
43
+ ans = self.get_input()
44
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
45
+ if not ans:
46
+ return Baidu.be_output("")
47
+
48
+ try:
49
+ url = 'https://www.baidu.com/s?wd=' + ans + '&rn=' + str(self._param.top_n)
50
+ headers = {
51
+ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36'}
52
+ response = requests.get(url=url, headers=headers)
53
+
54
+ url_res = re.findall(r"'url': \\\"(.*?)\\\"}", response.text)
55
+ title_res = re.findall(r"'title': \\\"(.*?)\\\",\\n", response.text)
56
+ body_res = re.findall(r"\"contentText\":\"(.*?)\"", response.text)
57
+ baidu_res = [{"content": re.sub('<em>|</em>', '', '<a href="' + url + '">' + title + '</a> ' + body)} for
58
+ url, title, body in zip(url_res, title_res, body_res)]
59
+ del body_res, url_res, title_res
60
+ except Exception as e:
61
+ return Baidu.be_output("**ERROR**: " + str(e))
62
+
63
+ if not baidu_res:
64
+ return Baidu.be_output("")
65
+
66
+ df = pd.DataFrame(baidu_res)
67
+ if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
68
+ return df
69
+
agent/component/baidufanyi.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ import random
17
+ from abc import ABC
18
+ import requests
19
+ from agent.component.base import ComponentBase, ComponentParamBase
20
+ from hashlib import md5
21
+
22
+
23
+ class BaiduFanyiParam(ComponentParamBase):
24
+ """
25
+ Define the BaiduFanyi component parameters.
26
+ """
27
+
28
+ def __init__(self):
29
+ super().__init__()
30
+ self.appid = "xxx"
31
+ self.secret_key = "xxx"
32
+ self.trans_type = 'translate'
33
+ self.parameters = []
34
+ self.source_lang = 'auto'
35
+ self.target_lang = 'auto'
36
+ self.domain = 'finance'
37
+
38
+ def check(self):
39
+ self.check_positive_integer(self.top_n, "Top N")
40
+ self.check_empty(self.appid, "BaiduFanyi APPID")
41
+ self.check_empty(self.secret_key, "BaiduFanyi Secret Key")
42
+ self.check_valid_value(self.trans_type, "Translate type", ['translate', 'fieldtranslate'])
43
+ self.check_valid_value(self.trans_type, "Translate domain",
44
+ ['it', 'finance', 'machinery', 'senimed', 'novel', 'academic', 'aerospace', 'wiki',
45
+ 'news', 'law', 'contract'])
46
+ self.check_valid_value(self.source_lang, "Source language",
47
+ ['auto', 'zh', 'en', 'yue', 'wyw', 'jp', 'kor', 'fra', 'spa', 'th', 'ara', 'ru', 'pt',
48
+ 'de', 'it', 'el', 'nl', 'pl', 'bul', 'est', 'dan', 'fin', 'cs', 'rom', 'slo', 'swe',
49
+ 'hu', 'cht', 'vie'])
50
+ self.check_valid_value(self.target_lang, "Target language",
51
+ ['auto', 'zh', 'en', 'yue', 'wyw', 'jp', 'kor', 'fra', 'spa', 'th', 'ara', 'ru', 'pt',
52
+ 'de', 'it', 'el', 'nl', 'pl', 'bul', 'est', 'dan', 'fin', 'cs', 'rom', 'slo', 'swe',
53
+ 'hu', 'cht', 'vie'])
54
+ self.check_valid_value(self.domain, "Translate field",
55
+ ['it', 'finance', 'machinery', 'senimed', 'novel', 'academic', 'aerospace', 'wiki',
56
+ 'news', 'law', 'contract'])
57
+
58
+
59
+ class BaiduFanyi(ComponentBase, ABC):
60
+ component_name = "BaiduFanyi"
61
+
62
+ def _run(self, history, **kwargs):
63
+
64
+ ans = self.get_input()
65
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
66
+ if not ans:
67
+ return BaiduFanyi.be_output("")
68
+
69
+ try:
70
+ source_lang = self._param.source_lang
71
+ target_lang = self._param.target_lang
72
+ appid = self._param.appid
73
+ salt = random.randint(32768, 65536)
74
+ secret_key = self._param.secret_key
75
+
76
+ if self._param.trans_type == 'translate':
77
+ sign = md5((appid + ans + salt + secret_key).encode('utf-8')).hexdigest()
78
+ url = 'http://api.fanyi.baidu.com/api/trans/vip/translate?' + 'q=' + ans + '&from=' + source_lang + '&to=' + target_lang + '&appid=' + appid + '&salt=' + salt + '&sign=' + sign
79
+ headers = {"Content-Type": "application/x-www-form-urlencoded"}
80
+ response = requests.post(url=url, headers=headers).json()
81
+
82
+ if response.get('error_code'):
83
+ BaiduFanyi.be_output("**Error**:" + response['error_msg'])
84
+
85
+ return BaiduFanyi.be_output(response['trans_result'][0]['dst'])
86
+ elif self._param.trans_type == 'fieldtranslate':
87
+ domain = self._param.domain
88
+ sign = md5((appid + ans + salt + domain + secret_key).encode('utf-8')).hexdigest()
89
+ url = 'http://api.fanyi.baidu.com/api/trans/vip/fieldtranslate?' + 'q=' + ans + '&from=' + source_lang + '&to=' + target_lang + '&appid=' + appid + '&salt=' + salt + '&domain=' + domain + '&sign=' + sign
90
+ headers = {"Content-Type": "application/x-www-form-urlencoded"}
91
+ response = requests.post(url=url, headers=headers).json()
92
+
93
+ if response.get('error_code'):
94
+ BaiduFanyi.be_output("**Error**:" + response['error_msg'])
95
+
96
+ return BaiduFanyi.be_output(response['trans_result'][0]['dst'])
97
+
98
+ except Exception as e:
99
+ BaiduFanyi.be_output("**Error**:" + str(e))
agent/component/base.py ADDED
@@ -0,0 +1,494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ import builtins
18
+ import json
19
+ import os
20
+ from copy import deepcopy
21
+ from functools import partial
22
+ from typing import List, Dict, Tuple, Union
23
+
24
+ import pandas as pd
25
+
26
+ from agent import settings
27
+ from agent.settings import flow_logger, DEBUG
28
+
29
+ _FEEDED_DEPRECATED_PARAMS = "_feeded_deprecated_params"
30
+ _DEPRECATED_PARAMS = "_deprecated_params"
31
+ _USER_FEEDED_PARAMS = "_user_feeded_params"
32
+ _IS_RAW_CONF = "_is_raw_conf"
33
+
34
+
35
+ class ComponentParamBase(ABC):
36
+ def __init__(self):
37
+ self.output_var_name = "output"
38
+ self.message_history_window_size = 22
39
+
40
+ def set_name(self, name: str):
41
+ self._name = name
42
+ return self
43
+
44
+ def check(self):
45
+ raise NotImplementedError("Parameter Object should be checked.")
46
+
47
+ @classmethod
48
+ def _get_or_init_deprecated_params_set(cls):
49
+ if not hasattr(cls, _DEPRECATED_PARAMS):
50
+ setattr(cls, _DEPRECATED_PARAMS, set())
51
+ return getattr(cls, _DEPRECATED_PARAMS)
52
+
53
+ def _get_or_init_feeded_deprecated_params_set(self, conf=None):
54
+ if not hasattr(self, _FEEDED_DEPRECATED_PARAMS):
55
+ if conf is None:
56
+ setattr(self, _FEEDED_DEPRECATED_PARAMS, set())
57
+ else:
58
+ setattr(
59
+ self,
60
+ _FEEDED_DEPRECATED_PARAMS,
61
+ set(conf[_FEEDED_DEPRECATED_PARAMS]),
62
+ )
63
+ return getattr(self, _FEEDED_DEPRECATED_PARAMS)
64
+
65
+ def _get_or_init_user_feeded_params_set(self, conf=None):
66
+ if not hasattr(self, _USER_FEEDED_PARAMS):
67
+ if conf is None:
68
+ setattr(self, _USER_FEEDED_PARAMS, set())
69
+ else:
70
+ setattr(self, _USER_FEEDED_PARAMS, set(conf[_USER_FEEDED_PARAMS]))
71
+ return getattr(self, _USER_FEEDED_PARAMS)
72
+
73
+ def get_user_feeded(self):
74
+ return self._get_or_init_user_feeded_params_set()
75
+
76
+ def get_feeded_deprecated_params(self):
77
+ return self._get_or_init_feeded_deprecated_params_set()
78
+
79
+ @property
80
+ def _deprecated_params_set(self):
81
+ return {name: True for name in self.get_feeded_deprecated_params()}
82
+
83
+ def __str__(self):
84
+
85
+ return json.dumps(self.as_dict(), ensure_ascii=False)
86
+
87
+ def as_dict(self):
88
+ def _recursive_convert_obj_to_dict(obj):
89
+ ret_dict = {}
90
+ for attr_name in list(obj.__dict__):
91
+ if attr_name in [_FEEDED_DEPRECATED_PARAMS, _DEPRECATED_PARAMS, _USER_FEEDED_PARAMS, _IS_RAW_CONF]:
92
+ continue
93
+ # get attr
94
+ attr = getattr(obj, attr_name)
95
+ if isinstance(attr, pd.DataFrame):
96
+ ret_dict[attr_name] = attr.to_dict()
97
+ continue
98
+ if attr and type(attr).__name__ not in dir(builtins):
99
+ ret_dict[attr_name] = _recursive_convert_obj_to_dict(attr)
100
+ else:
101
+ ret_dict[attr_name] = attr
102
+
103
+ return ret_dict
104
+
105
+ return _recursive_convert_obj_to_dict(self)
106
+
107
+ def update(self, conf, allow_redundant=False):
108
+ update_from_raw_conf = conf.get(_IS_RAW_CONF, True)
109
+ if update_from_raw_conf:
110
+ deprecated_params_set = self._get_or_init_deprecated_params_set()
111
+ feeded_deprecated_params_set = (
112
+ self._get_or_init_feeded_deprecated_params_set()
113
+ )
114
+ user_feeded_params_set = self._get_or_init_user_feeded_params_set()
115
+ setattr(self, _IS_RAW_CONF, False)
116
+ else:
117
+ feeded_deprecated_params_set = (
118
+ self._get_or_init_feeded_deprecated_params_set(conf)
119
+ )
120
+ user_feeded_params_set = self._get_or_init_user_feeded_params_set(conf)
121
+
122
+ def _recursive_update_param(param, config, depth, prefix):
123
+ if depth > settings.PARAM_MAXDEPTH:
124
+ raise ValueError("Param define nesting too deep!!!, can not parse it")
125
+
126
+ inst_variables = param.__dict__
127
+ redundant_attrs = []
128
+ for config_key, config_value in config.items():
129
+ # redundant attr
130
+ if config_key not in inst_variables:
131
+ if not update_from_raw_conf and config_key.startswith("_"):
132
+ setattr(param, config_key, config_value)
133
+ else:
134
+ setattr(param, config_key, config_value)
135
+ # redundant_attrs.append(config_key)
136
+ continue
137
+
138
+ full_config_key = f"{prefix}{config_key}"
139
+
140
+ if update_from_raw_conf:
141
+ # add user feeded params
142
+ user_feeded_params_set.add(full_config_key)
143
+
144
+ # update user feeded deprecated param set
145
+ if full_config_key in deprecated_params_set:
146
+ feeded_deprecated_params_set.add(full_config_key)
147
+
148
+ # supported attr
149
+ attr = getattr(param, config_key)
150
+ if type(attr).__name__ in dir(builtins) or attr is None:
151
+ setattr(param, config_key, config_value)
152
+
153
+ else:
154
+ # recursive set obj attr
155
+ sub_params = _recursive_update_param(
156
+ attr, config_value, depth + 1, prefix=f"{prefix}{config_key}."
157
+ )
158
+ setattr(param, config_key, sub_params)
159
+
160
+ if not allow_redundant and redundant_attrs:
161
+ raise ValueError(
162
+ f"cpn `{getattr(self, '_name', type(self))}` has redundant parameters: `{[redundant_attrs]}`"
163
+ )
164
+
165
+ return param
166
+
167
+ return _recursive_update_param(param=self, config=conf, depth=0, prefix="")
168
+
169
+ def extract_not_builtin(self):
170
+ def _get_not_builtin_types(obj):
171
+ ret_dict = {}
172
+ for variable in obj.__dict__:
173
+ attr = getattr(obj, variable)
174
+ if attr and type(attr).__name__ not in dir(builtins):
175
+ ret_dict[variable] = _get_not_builtin_types(attr)
176
+
177
+ return ret_dict
178
+
179
+ return _get_not_builtin_types(self)
180
+
181
+ def validate(self):
182
+ self.builtin_types = dir(builtins)
183
+ self.func = {
184
+ "ge": self._greater_equal_than,
185
+ "le": self._less_equal_than,
186
+ "in": self._in,
187
+ "not_in": self._not_in,
188
+ "range": self._range,
189
+ }
190
+ home_dir = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
191
+ param_validation_path_prefix = home_dir + "/param_validation/"
192
+
193
+ param_name = type(self).__name__
194
+ param_validation_path = "/".join(
195
+ [param_validation_path_prefix, param_name + ".json"]
196
+ )
197
+
198
+ validation_json = None
199
+
200
+ try:
201
+ with open(param_validation_path, "r") as fin:
202
+ validation_json = json.loads(fin.read())
203
+ except BaseException:
204
+ return
205
+
206
+ self._validate_param(self, validation_json)
207
+
208
+ def _validate_param(self, param_obj, validation_json):
209
+ default_section = type(param_obj).__name__
210
+ var_list = param_obj.__dict__
211
+
212
+ for variable in var_list:
213
+ attr = getattr(param_obj, variable)
214
+
215
+ if type(attr).__name__ in self.builtin_types or attr is None:
216
+ if variable not in validation_json:
217
+ continue
218
+
219
+ validation_dict = validation_json[default_section][variable]
220
+ value = getattr(param_obj, variable)
221
+ value_legal = False
222
+
223
+ for op_type in validation_dict:
224
+ if self.func[op_type](value, validation_dict[op_type]):
225
+ value_legal = True
226
+ break
227
+
228
+ if not value_legal:
229
+ raise ValueError(
230
+ "Plase check runtime conf, {} = {} does not match user-parameter restriction".format(
231
+ variable, value
232
+ )
233
+ )
234
+
235
+ elif variable in validation_json:
236
+ self._validate_param(attr, validation_json)
237
+
238
+ @staticmethod
239
+ def check_string(param, descr):
240
+ if type(param).__name__ not in ["str"]:
241
+ raise ValueError(
242
+ descr + " {} not supported, should be string type".format(param)
243
+ )
244
+
245
+ @staticmethod
246
+ def check_empty(param, descr):
247
+ if not param:
248
+ raise ValueError(
249
+ descr + " does not support empty value."
250
+ )
251
+
252
+ @staticmethod
253
+ def check_positive_integer(param, descr):
254
+ if type(param).__name__ not in ["int", "long"] or param <= 0:
255
+ raise ValueError(
256
+ descr + " {} not supported, should be positive integer".format(param)
257
+ )
258
+
259
+ @staticmethod
260
+ def check_positive_number(param, descr):
261
+ if type(param).__name__ not in ["float", "int", "long"] or param <= 0:
262
+ raise ValueError(
263
+ descr + " {} not supported, should be positive numeric".format(param)
264
+ )
265
+
266
+ @staticmethod
267
+ def check_nonnegative_number(param, descr):
268
+ if type(param).__name__ not in ["float", "int", "long"] or param < 0:
269
+ raise ValueError(
270
+ descr
271
+ + " {} not supported, should be non-negative numeric".format(param)
272
+ )
273
+
274
+ @staticmethod
275
+ def check_decimal_float(param, descr):
276
+ if type(param).__name__ not in ["float", "int"] or param < 0 or param > 1:
277
+ raise ValueError(
278
+ descr
279
+ + " {} not supported, should be a float number in range [0, 1]".format(
280
+ param
281
+ )
282
+ )
283
+
284
+ @staticmethod
285
+ def check_boolean(param, descr):
286
+ if type(param).__name__ != "bool":
287
+ raise ValueError(
288
+ descr + " {} not supported, should be bool type".format(param)
289
+ )
290
+
291
+ @staticmethod
292
+ def check_open_unit_interval(param, descr):
293
+ if type(param).__name__ not in ["float"] or param <= 0 or param >= 1:
294
+ raise ValueError(
295
+ descr + " should be a numeric number between 0 and 1 exclusively"
296
+ )
297
+
298
+ @staticmethod
299
+ def check_valid_value(param, descr, valid_values):
300
+ if param not in valid_values:
301
+ raise ValueError(
302
+ descr
303
+ + " {} is not supported, it should be in {}".format(param, valid_values)
304
+ )
305
+
306
+ @staticmethod
307
+ def check_defined_type(param, descr, types):
308
+ if type(param).__name__ not in types:
309
+ raise ValueError(
310
+ descr + " {} not supported, should be one of {}".format(param, types)
311
+ )
312
+
313
+ @staticmethod
314
+ def check_and_change_lower(param, valid_list, descr=""):
315
+ if type(param).__name__ != "str":
316
+ raise ValueError(
317
+ descr
318
+ + " {} not supported, should be one of {}".format(param, valid_list)
319
+ )
320
+
321
+ lower_param = param.lower()
322
+ if lower_param in valid_list:
323
+ return lower_param
324
+ else:
325
+ raise ValueError(
326
+ descr
327
+ + " {} not supported, should be one of {}".format(param, valid_list)
328
+ )
329
+
330
+ @staticmethod
331
+ def _greater_equal_than(value, limit):
332
+ return value >= limit - settings.FLOAT_ZERO
333
+
334
+ @staticmethod
335
+ def _less_equal_than(value, limit):
336
+ return value <= limit + settings.FLOAT_ZERO
337
+
338
+ @staticmethod
339
+ def _range(value, ranges):
340
+ in_range = False
341
+ for left_limit, right_limit in ranges:
342
+ if (
343
+ left_limit - settings.FLOAT_ZERO
344
+ <= value
345
+ <= right_limit + settings.FLOAT_ZERO
346
+ ):
347
+ in_range = True
348
+ break
349
+
350
+ return in_range
351
+
352
+ @staticmethod
353
+ def _in(value, right_value_list):
354
+ return value in right_value_list
355
+
356
+ @staticmethod
357
+ def _not_in(value, wrong_value_list):
358
+ return value not in wrong_value_list
359
+
360
+ def _warn_deprecated_param(self, param_name, descr):
361
+ if self._deprecated_params_set.get(param_name):
362
+ flow_logger.warning(
363
+ f"{descr} {param_name} is deprecated and ignored in this version."
364
+ )
365
+
366
+ def _warn_to_deprecate_param(self, param_name, descr, new_param):
367
+ if self._deprecated_params_set.get(param_name):
368
+ flow_logger.warning(
369
+ f"{descr} {param_name} will be deprecated in future release; "
370
+ f"please use {new_param} instead."
371
+ )
372
+ return True
373
+ return False
374
+
375
+
376
+ class ComponentBase(ABC):
377
+ component_name: str
378
+
379
+ def __str__(self):
380
+ """
381
+ {
382
+ "component_name": "Begin",
383
+ "params": {}
384
+ }
385
+ """
386
+ return """{{
387
+ "component_name": "{}",
388
+ "params": {}
389
+ }}""".format(self.component_name,
390
+ self._param
391
+ )
392
+
393
+ def __init__(self, canvas, id, param: ComponentParamBase):
394
+ self._canvas = canvas
395
+ self._id = id
396
+ self._param = param
397
+ self._param.check()
398
+
399
+ def run(self, history, **kwargs):
400
+ flow_logger.info("{}, history: {}, kwargs: {}".format(self, json.dumps(history, ensure_ascii=False),
401
+ json.dumps(kwargs, ensure_ascii=False)))
402
+ try:
403
+ res = self._run(history, **kwargs)
404
+ self.set_output(res)
405
+ except Exception as e:
406
+ self.set_output(pd.DataFrame([{"content": str(e)}]))
407
+ raise e
408
+
409
+ return res
410
+
411
+ def _run(self, history, **kwargs):
412
+ raise NotImplementedError()
413
+
414
+ def output(self, allow_partial=True) -> Tuple[str, Union[pd.DataFrame, partial]]:
415
+ o = getattr(self._param, self._param.output_var_name)
416
+ if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
417
+ if not isinstance(o, list): o = [o]
418
+ o = pd.DataFrame(o)
419
+
420
+ if allow_partial or not isinstance(o, partial):
421
+ if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
422
+ return pd.DataFrame(o if isinstance(o, list) else [o])
423
+ return self._param.output_var_name, o
424
+
425
+ outs = None
426
+ for oo in o():
427
+ if not isinstance(oo, pd.DataFrame):
428
+ outs = pd.DataFrame(oo if isinstance(oo, list) else [oo])
429
+ else: outs = oo
430
+ return self._param.output_var_name, outs
431
+
432
+ def reset(self):
433
+ setattr(self._param, self._param.output_var_name, None)
434
+
435
+ def set_output(self, v: pd.DataFrame):
436
+ setattr(self._param, self._param.output_var_name, v)
437
+
438
+ def get_input(self):
439
+ upstream_outs = []
440
+ reversed_cpnts = []
441
+ if len(self._canvas.path) > 1:
442
+ reversed_cpnts.extend(self._canvas.path[-2])
443
+ reversed_cpnts.extend(self._canvas.path[-1])
444
+
445
+ if DEBUG: print(self.component_name, reversed_cpnts[::-1])
446
+ for u in reversed_cpnts[::-1]:
447
+ if self.get_component_name(u) in ["switch"]: continue
448
+ if self.component_name.lower() == "generate" and self.get_component_name(u) == "retrieval":
449
+ o = self._canvas.get_component(u)["obj"].output(allow_partial=False)[1]
450
+ if o is not None:
451
+ upstream_outs.append(o)
452
+ continue
453
+ if u not in self._canvas.get_component(self._id)["upstream"]: continue
454
+ if self.component_name.lower().find("switch") < 0 \
455
+ and self.get_component_name(u) in ["relevant", "categorize"]:
456
+ continue
457
+ if u.lower().find("answer") >= 0:
458
+ for r, c in self._canvas.history[::-1]:
459
+ if r == "user":
460
+ upstream_outs.append(pd.DataFrame([{"content": c}]))
461
+ break
462
+ break
463
+ if self.component_name.lower().find("answer") >= 0:
464
+ if self.get_component_name(u) in ["relevant"]:
465
+ continue
466
+ else:
467
+ o = self._canvas.get_component(u)["obj"].output(allow_partial=False)[1]
468
+ if o is not None:
469
+ upstream_outs.append(o)
470
+ break
471
+
472
+ if upstream_outs:
473
+ df = pd.concat(upstream_outs, ignore_index=True)
474
+ if "content" in df:
475
+ df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
476
+ return df
477
+ return pd.DataFrame()
478
+
479
+ def get_stream_input(self):
480
+ reversed_cpnts = []
481
+ if len(self._canvas.path) > 1:
482
+ reversed_cpnts.extend(self._canvas.path[-2])
483
+ reversed_cpnts.extend(self._canvas.path[-1])
484
+
485
+ for u in reversed_cpnts[::-1]:
486
+ if self.get_component_name(u) in ["switch", "answer"]: continue
487
+ return self._canvas.get_component(u)["obj"].output()[1]
488
+
489
+ @staticmethod
490
+ def be_output(v):
491
+ return pd.DataFrame([{"content": v}])
492
+
493
+ def get_component_name(self, cpn_id):
494
+ return self._canvas.get_component(cpn_id)["obj"].component_name.lower()
agent/component/begin.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from functools import partial
17
+ import pandas as pd
18
+ from agent.component.base import ComponentBase, ComponentParamBase
19
+
20
+
21
+ class BeginParam(ComponentParamBase):
22
+
23
+ """
24
+ Define the Begin component parameters.
25
+ """
26
+ def __init__(self):
27
+ super().__init__()
28
+ self.prologue = "Hi! I'm your smart assistant. What can I do for you?"
29
+
30
+ def check(self):
31
+ return True
32
+
33
+
34
+ class Begin(ComponentBase):
35
+ component_name = "Begin"
36
+
37
+ def _run(self, history, **kwargs):
38
+ if kwargs.get("stream"):
39
+ return partial(self.stream_output)
40
+ return pd.DataFrame([{"content": self._param.prologue}])
41
+
42
+ def stream_output(self):
43
+ res = {"content": self._param.prologue}
44
+ yield res
45
+ self.set_output(res)
46
+
47
+
48
+
agent/component/bing.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ import requests
18
+ import pandas as pd
19
+ from agent.settings import DEBUG
20
+ from agent.component.base import ComponentBase, ComponentParamBase
21
+
22
+
23
+ class BingParam(ComponentParamBase):
24
+ """
25
+ Define the Bing component parameters.
26
+ """
27
+
28
+ def __init__(self):
29
+ super().__init__()
30
+ self.top_n = 10
31
+ self.channel = "Webpages"
32
+ self.api_key = "YOUR_ACCESS_KEY"
33
+ self.country = "CN"
34
+ self.language = "en"
35
+
36
+ def check(self):
37
+ self.check_positive_integer(self.top_n, "Top N")
38
+ self.check_valid_value(self.channel, "Bing Web Search or Bing News", ["Webpages", "News"])
39
+ self.check_empty(self.api_key, "Bing subscription key")
40
+ self.check_valid_value(self.country, "Bing Country",
41
+ ['AR', 'AU', 'AT', 'BE', 'BR', 'CA', 'CL', 'DK', 'FI', 'FR', 'DE', 'HK', 'IN', 'ID',
42
+ 'IT', 'JP', 'KR', 'MY', 'MX', 'NL', 'NZ', 'NO', 'CN', 'PL', 'PT', 'PH', 'RU', 'SA',
43
+ 'ZA', 'ES', 'SE', 'CH', 'TW', 'TR', 'GB', 'US'])
44
+ self.check_valid_value(self.language, "Bing Languages",
45
+ ['ar', 'eu', 'bn', 'bg', 'ca', 'ns', 'nt', 'hr', 'cs', 'da', 'nl', 'en', 'gb', 'et',
46
+ 'fi', 'fr', 'gl', 'de', 'gu', 'he', 'hi', 'hu', 'is', 'it', 'jp', 'kn', 'ko', 'lv',
47
+ 'lt', 'ms', 'ml', 'mr', 'nb', 'pl', 'br', 'pt', 'pa', 'ro', 'ru', 'sr', 'sk', 'sl',
48
+ 'es', 'sv', 'ta', 'te', 'th', 'tr', 'uk', 'vi'])
49
+
50
+
51
+ class Bing(ComponentBase, ABC):
52
+ component_name = "Bing"
53
+
54
+ def _run(self, history, **kwargs):
55
+ ans = self.get_input()
56
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
57
+ if not ans:
58
+ return Bing.be_output("")
59
+
60
+ try:
61
+ headers = {"Ocp-Apim-Subscription-Key": self._param.api_key, 'Accept-Language': self._param.language}
62
+ params = {"q": ans, "textDecorations": True, "textFormat": "HTML", "cc": self._param.country,
63
+ "answerCount": 1, "promote": self._param.channel}
64
+ if self._param.channel == "Webpages":
65
+ response = requests.get("https://api.bing.microsoft.com/v7.0/search", headers=headers, params=params)
66
+ response.raise_for_status()
67
+ search_results = response.json()
68
+ bing_res = [{"content": '<a href="' + i["url"] + '">' + i["name"] + '</a> ' + i["snippet"]} for i in
69
+ search_results["webPages"]["value"]]
70
+ elif self._param.channel == "News":
71
+ response = requests.get("https://api.bing.microsoft.com/v7.0/news/search", headers=headers,
72
+ params=params)
73
+ response.raise_for_status()
74
+ search_results = response.json()
75
+ bing_res = [{"content": '<a href="' + i["url"] + '">' + i["name"] + '</a> ' + i["description"]} for i
76
+ in search_results['news']['value']]
77
+ except Exception as e:
78
+ return Bing.be_output("**ERROR**: " + str(e))
79
+
80
+ if not bing_res:
81
+ return Bing.be_output("")
82
+
83
+ df = pd.DataFrame(bing_res)
84
+ if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
85
+ return df
agent/component/categorize.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ from api.db import LLMType
18
+ from api.db.services.llm_service import LLMBundle
19
+ from agent.component import GenerateParam, Generate
20
+ from agent.settings import DEBUG
21
+
22
+
23
+ class CategorizeParam(GenerateParam):
24
+
25
+ """
26
+ Define the Categorize component parameters.
27
+ """
28
+ def __init__(self):
29
+ super().__init__()
30
+ self.category_description = {}
31
+ self.prompt = ""
32
+
33
+ def check(self):
34
+ super().check()
35
+ self.check_empty(self.category_description, "[Categorize] Category examples")
36
+ for k, v in self.category_description.items():
37
+ if not k: raise ValueError(f"[Categorize] Category name can not be empty!")
38
+ if not v.get("to"): raise ValueError(f"[Categorize] 'To' of category {k} can not be empty!")
39
+
40
+ def get_prompt(self):
41
+ cate_lines = []
42
+ for c, desc in self.category_description.items():
43
+ for l in desc.get("examples", "").split("\n"):
44
+ if not l: continue
45
+ cate_lines.append("Question: {}\tCategory: {}".format(l, c))
46
+ descriptions = []
47
+ for c, desc in self.category_description.items():
48
+ if desc.get("description"):
49
+ descriptions.append(
50
+ "--------------------\nCategory: {}\nDescription: {}\n".format(c, desc["description"]))
51
+
52
+ self.prompt = """
53
+ You're a text classifier. You need to categorize the user’s questions into {} categories,
54
+ namely: {}
55
+ Here's description of each category:
56
+ {}
57
+
58
+ You could learn from the following examples:
59
+ {}
60
+ You could learn from the above examples.
61
+ Just mention the category names, no need for any additional words.
62
+ """.format(
63
+ len(self.category_description.keys()),
64
+ "/".join(list(self.category_description.keys())),
65
+ "\n".join(descriptions),
66
+ "- ".join(cate_lines)
67
+ )
68
+ return self.prompt
69
+
70
+
71
+ class Categorize(Generate, ABC):
72
+ component_name = "Categorize"
73
+
74
+ def _run(self, history, **kwargs):
75
+ input = self.get_input()
76
+ input = "Question: " + ("; ".join(input["content"]) if "content" in input else "") + "Category: "
77
+ chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
78
+ ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": input}],
79
+ self._param.gen_conf())
80
+ if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::", input)
81
+ for c in self._param.category_description.keys():
82
+ if ans.lower().find(c.lower()) >= 0:
83
+ return Categorize.be_output(self._param.category_description[c]["to"])
84
+
85
+ return Categorize.be_output(self._param.category_description.items()[-1][1]["to"])
86
+
87
+
agent/component/cite.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+
18
+ import pandas as pd
19
+
20
+ from api.db import LLMType
21
+ from api.db.services.knowledgebase_service import KnowledgebaseService
22
+ from api.db.services.llm_service import LLMBundle
23
+ from api.settings import retrievaler
24
+ from agent.component.base import ComponentBase, ComponentParamBase
25
+
26
+
27
+ class CiteParam(ComponentParamBase):
28
+
29
+ """
30
+ Define the Retrieval component parameters.
31
+ """
32
+ def __init__(self):
33
+ super().__init__()
34
+ self.cite_sources = []
35
+
36
+ def check(self):
37
+ self.check_empty(self.cite_source, "Please specify where you want to cite from.")
38
+
39
+
40
+ class Cite(ComponentBase, ABC):
41
+ component_name = "Cite"
42
+
43
+ def _run(self, history, **kwargs):
44
+ input = "\n- ".join(self.get_input()["content"])
45
+ sources = [self._canvas.get_component(cpn_id).output()[1] for cpn_id in self._param.cite_source]
46
+ query = []
47
+ for role, cnt in history[::-1][:self._param.message_history_window_size]:
48
+ if role != "user":continue
49
+ query.append(cnt)
50
+ query = "\n".join(query)
51
+
52
+ kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
53
+ if not kbs:
54
+ raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
55
+ embd_nms = list(set([kb.embd_id for kb in kbs]))
56
+ assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
57
+
58
+ embd_mdl = LLMBundle(kbs[0].tenant_id, LLMType.EMBEDDING, embd_nms[0])
59
+
60
+ rerank_mdl = None
61
+ if self._param.rerank_id:
62
+ rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
63
+
64
+ kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
65
+ 1, self._param.top_n,
66
+ self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
67
+ aggs=False, rerank_mdl=rerank_mdl)
68
+
69
+ if not kbinfos["chunks"]: return pd.DataFrame()
70
+ df = pd.DataFrame(kbinfos["chunks"])
71
+ df["content"] = df["content_with_weight"]
72
+ del df["content_with_weight"]
73
+ return df
74
+
75
+
agent/component/deepl.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ import re
18
+ from agent.component.base import ComponentBase, ComponentParamBase
19
+ import deepl
20
+
21
+
22
+ class DeepLParam(ComponentParamBase):
23
+ """
24
+ Define the DeepL component parameters.
25
+ """
26
+
27
+ def __init__(self):
28
+ super().__init__()
29
+ self.auth_key = "xxx"
30
+ self.parameters = []
31
+ self.source_lang = 'ZH'
32
+ self.target_lang = 'EN-GB'
33
+
34
+ def check(self):
35
+ self.check_positive_integer(self.top_n, "Top N")
36
+ self.check_valid_value(self.source_lang, "Source language",
37
+ ['AR', 'BG', 'CS', 'DA', 'DE', 'EL', 'EN', 'ES', 'ET', 'FI', 'FR', 'HU', 'ID', 'IT',
38
+ 'JA', 'KO', 'LT', 'LV', 'NB', 'NL', 'PL', 'PT', 'RO', 'RU', 'SK', 'SL', 'SV', 'TR',
39
+ 'UK', 'ZH'])
40
+ self.check_valid_value(self.target_lang, "Target language",
41
+ ['AR', 'BG', 'CS', 'DA', 'DE', 'EL', 'EN-GB', 'EN-US', 'ES', 'ET', 'FI', 'FR', 'HU',
42
+ 'ID', 'IT', 'JA', 'KO', 'LT', 'LV', 'NB', 'NL', 'PL', 'PT-BR', 'PT-PT', 'RO', 'RU',
43
+ 'SK', 'SL', 'SV', 'TR', 'UK', 'ZH'])
44
+
45
+
46
+ class DeepL(ComponentBase, ABC):
47
+ component_name = "GitHub"
48
+
49
+ def _run(self, history, **kwargs):
50
+ ans = self.get_input()
51
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
52
+ if not ans:
53
+ return DeepL.be_output("")
54
+
55
+ try:
56
+ translator = deepl.Translator(self._param.auth_key)
57
+ result = translator.translate_text(ans, source_lang=self._param.source_lang,
58
+ target_lang=self._param.target_lang)
59
+
60
+ return DeepL.be_output(result.text)
61
+ except Exception as e:
62
+ DeepL.be_output("**Error**:" + str(e))
agent/component/duckduckgo.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ from duckduckgo_search import DDGS
18
+ import pandas as pd
19
+ from agent.settings import DEBUG
20
+ from agent.component.base import ComponentBase, ComponentParamBase
21
+
22
+
23
+ class DuckDuckGoParam(ComponentParamBase):
24
+ """
25
+ Define the DuckDuckGo component parameters.
26
+ """
27
+
28
+ def __init__(self):
29
+ super().__init__()
30
+ self.top_n = 10
31
+ self.channel = "text"
32
+
33
+ def check(self):
34
+ self.check_positive_integer(self.top_n, "Top N")
35
+ self.check_valid_value(self.channel, "Web Search or News", ["text", "news"])
36
+
37
+
38
+ class DuckDuckGo(ComponentBase, ABC):
39
+ component_name = "DuckDuckGo"
40
+
41
+ def _run(self, history, **kwargs):
42
+ ans = self.get_input()
43
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
44
+ if not ans:
45
+ return DuckDuckGo.be_output("")
46
+
47
+ try:
48
+ if self._param.channel == "text":
49
+ with DDGS() as ddgs:
50
+ # {'title': '', 'href': '', 'body': ''}
51
+ duck_res = [{"content": '<a href="' + i["href"] + '">' + i["title"] + '</a> ' + i["body"]} for i
52
+ in ddgs.text(ans, max_results=self._param.top_n)]
53
+ elif self._param.channel == "news":
54
+ with DDGS() as ddgs:
55
+ # {'date': '', 'title': '', 'body': '', 'url': '', 'image': '', 'source': ''}
56
+ duck_res = [{"content": '<a href="' + i["url"] + '">' + i["title"] + '</a> ' + i["body"]} for i
57
+ in ddgs.news(ans, max_results=self._param.top_n)]
58
+ except Exception as e:
59
+ return DuckDuckGo.be_output("**ERROR**: " + str(e))
60
+
61
+ if not duck_res:
62
+ return DuckDuckGo.be_output("")
63
+
64
+ df = pd.DataFrame(duck_res)
65
+ if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
66
+ return df
agent/component/generate.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ import re
17
+ from functools import partial
18
+ import pandas as pd
19
+ from api.db import LLMType
20
+ from api.db.services.llm_service import LLMBundle
21
+ from api.settings import retrievaler
22
+ from agent.component.base import ComponentBase, ComponentParamBase
23
+
24
+
25
+ class GenerateParam(ComponentParamBase):
26
+ """
27
+ Define the Generate component parameters.
28
+ """
29
+
30
+ def __init__(self):
31
+ super().__init__()
32
+ self.llm_id = ""
33
+ self.prompt = ""
34
+ self.max_tokens = 0
35
+ self.temperature = 0
36
+ self.top_p = 0
37
+ self.presence_penalty = 0
38
+ self.frequency_penalty = 0
39
+ self.cite = True
40
+ self.parameters = []
41
+
42
+ def check(self):
43
+ self.check_decimal_float(self.temperature, "[Generate] Temperature")
44
+ self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty")
45
+ self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty")
46
+ self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens")
47
+ self.check_decimal_float(self.top_p, "[Generate] Top P")
48
+ self.check_empty(self.llm_id, "[Generate] LLM")
49
+ # self.check_defined_type(self.parameters, "Parameters", ["list"])
50
+
51
+ def gen_conf(self):
52
+ conf = {}
53
+ if self.max_tokens > 0: conf["max_tokens"] = self.max_tokens
54
+ if self.temperature > 0: conf["temperature"] = self.temperature
55
+ if self.top_p > 0: conf["top_p"] = self.top_p
56
+ if self.presence_penalty > 0: conf["presence_penalty"] = self.presence_penalty
57
+ if self.frequency_penalty > 0: conf["frequency_penalty"] = self.frequency_penalty
58
+ return conf
59
+
60
+
61
+ class Generate(ComponentBase):
62
+ component_name = "Generate"
63
+
64
+ def get_dependent_components(self):
65
+ cpnts = [para["component_id"] for para in self._param.parameters]
66
+ return cpnts
67
+
68
+ def set_cite(self, retrieval_res, answer):
69
+ answer, idx = retrievaler.insert_citations(answer, [ck["content_ltks"] for _, ck in retrieval_res.iterrows()],
70
+ [ck["vector"] for _, ck in retrieval_res.iterrows()],
71
+ LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
72
+ self._canvas.get_embedding_model()), tkweight=0.7,
73
+ vtweight=0.3)
74
+ doc_ids = set([])
75
+ recall_docs = []
76
+ for i in idx:
77
+ did = retrieval_res.loc[int(i), "doc_id"]
78
+ if did in doc_ids: continue
79
+ doc_ids.add(did)
80
+ recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
81
+
82
+ del retrieval_res["vector"]
83
+ del retrieval_res["content_ltks"]
84
+
85
+ reference = {
86
+ "chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
87
+ "doc_aggs": recall_docs
88
+ }
89
+
90
+ if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
91
+ answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
92
+ res = {"content": answer, "reference": reference}
93
+
94
+ return res
95
+
96
+ def _run(self, history, **kwargs):
97
+ chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
98
+ prompt = self._param.prompt
99
+
100
+ retrieval_res = self.get_input()
101
+ input = (" - " + "\n - ".join(retrieval_res["content"])) if "content" in retrieval_res else ""
102
+ for para in self._param.parameters:
103
+ cpn = self._canvas.get_component(para["component_id"])["obj"]
104
+ _, out = cpn.output(allow_partial=False)
105
+ if "content" not in out.columns:
106
+ kwargs[para["key"]] = "Nothing"
107
+ else:
108
+ kwargs[para["key"]] = " - " + "\n - ".join(out["content"])
109
+
110
+ kwargs["input"] = input
111
+ for n, v in kwargs.items():
112
+ # prompt = re.sub(r"\{%s\}"%n, re.escape(str(v)), prompt)
113
+ prompt = re.sub(r"\{%s\}" % n, str(v), prompt)
114
+
115
+ downstreams = self._canvas.get_component(self._id)["downstream"]
116
+ if kwargs.get("stream") and len(downstreams) == 1 and self._canvas.get_component(downstreams[0])[
117
+ "obj"].component_name.lower() == "answer":
118
+ return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
119
+
120
+ if "empty_response" in retrieval_res.columns:
121
+ return Generate.be_output(input)
122
+
123
+ ans = chat_mdl.chat(prompt, self._canvas.get_history(self._param.message_history_window_size),
124
+ self._param.gen_conf())
125
+ if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
126
+ df = self.set_cite(retrieval_res, ans)
127
+ return pd.DataFrame(df)
128
+
129
+ return Generate.be_output(ans)
130
+
131
+ def stream_output(self, chat_mdl, prompt, retrieval_res):
132
+ res = None
133
+ if "empty_response" in retrieval_res.columns and "\n- ".join(retrieval_res["content"]):
134
+ res = {"content": "\n- ".join(retrieval_res["content"]), "reference": []}
135
+ yield res
136
+ self.set_output(res)
137
+ return
138
+
139
+ answer = ""
140
+ for ans in chat_mdl.chat_streamly(prompt, self._canvas.get_history(self._param.message_history_window_size),
141
+ self._param.gen_conf()):
142
+ res = {"content": ans, "reference": []}
143
+ answer = ans
144
+ yield res
145
+
146
+ if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
147
+ res = self.set_cite(retrieval_res, answer)
148
+ yield res
149
+
150
+ self.set_output(res)
agent/component/github.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ import pandas as pd
18
+ import requests
19
+ from agent.settings import DEBUG
20
+ from agent.component.base import ComponentBase, ComponentParamBase
21
+
22
+
23
+ class GitHubParam(ComponentParamBase):
24
+ """
25
+ Define the GitHub component parameters.
26
+ """
27
+
28
+ def __init__(self):
29
+ super().__init__()
30
+ self.top_n = 10
31
+
32
+ def check(self):
33
+ self.check_positive_integer(self.top_n, "Top N")
34
+
35
+
36
+ class GitHub(ComponentBase, ABC):
37
+ component_name = "GitHub"
38
+
39
+ def _run(self, history, **kwargs):
40
+ ans = self.get_input()
41
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
42
+ if not ans:
43
+ return GitHub.be_output("")
44
+
45
+ try:
46
+ url = 'https://api.github.com/search/repositories?q=' + ans + '&sort=stars&order=desc&per_page=' + str(
47
+ self._param.top_n)
48
+ headers = {"Content-Type": "application/vnd.github+json", "X-GitHub-Api-Version": '2022-11-28'}
49
+ response = requests.get(url=url, headers=headers).json()
50
+
51
+ github_res = [{"content": '<a href="' + i["html_url"] + '">' + i["name"] + '</a>' + str(
52
+ i["description"]) + '\n stars:' + str(i['watchers'])} for i in response['items']]
53
+ except Exception as e:
54
+ return GitHub.be_output("**ERROR**: " + str(e))
55
+
56
+ if not github_res:
57
+ return GitHub.be_output("")
58
+
59
+ df = pd.DataFrame(github_res)
60
+ if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
61
+ return df
agent/component/google.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ from serpapi import GoogleSearch
18
+ import pandas as pd
19
+ from agent.settings import DEBUG
20
+ from agent.component.base import ComponentBase, ComponentParamBase
21
+
22
+
23
+ class GoogleParam(ComponentParamBase):
24
+ """
25
+ Define the Google component parameters.
26
+ """
27
+
28
+ def __init__(self):
29
+ super().__init__()
30
+ self.top_n = 10
31
+ self.api_key = "xxx"
32
+ self.country = "cn"
33
+ self.language = "en"
34
+
35
+ def check(self):
36
+ self.check_positive_integer(self.top_n, "Top N")
37
+ self.check_empty(self.api_key, "SerpApi API key")
38
+ self.check_valid_value(self.country, "Google Country",
39
+ ['af', 'al', 'dz', 'as', 'ad', 'ao', 'ai', 'aq', 'ag', 'ar', 'am', 'aw', 'au', 'at',
40
+ 'az', 'bs', 'bh', 'bd', 'bb', 'by', 'be', 'bz', 'bj', 'bm', 'bt', 'bo', 'ba', 'bw',
41
+ 'bv', 'br', 'io', 'bn', 'bg', 'bf', 'bi', 'kh', 'cm', 'ca', 'cv', 'ky', 'cf', 'td',
42
+ 'cl', 'cn', 'cx', 'cc', 'co', 'km', 'cg', 'cd', 'ck', 'cr', 'ci', 'hr', 'cu', 'cy',
43
+ 'cz', 'dk', 'dj', 'dm', 'do', 'ec', 'eg', 'sv', 'gq', 'er', 'ee', 'et', 'fk', 'fo',
44
+ 'fj', 'fi', 'fr', 'gf', 'pf', 'tf', 'ga', 'gm', 'ge', 'de', 'gh', 'gi', 'gr', 'gl',
45
+ 'gd', 'gp', 'gu', 'gt', 'gn', 'gw', 'gy', 'ht', 'hm', 'va', 'hn', 'hk', 'hu', 'is',
46
+ 'in', 'id', 'ir', 'iq', 'ie', 'il', 'it', 'jm', 'jp', 'jo', 'kz', 'ke', 'ki', 'kp',
47
+ 'kr', 'kw', 'kg', 'la', 'lv', 'lb', 'ls', 'lr', 'ly', 'li', 'lt', 'lu', 'mo', 'mk',
48
+ 'mg', 'mw', 'my', 'mv', 'ml', 'mt', 'mh', 'mq', 'mr', 'mu', 'yt', 'mx', 'fm', 'md',
49
+ 'mc', 'mn', 'ms', 'ma', 'mz', 'mm', 'na', 'nr', 'np', 'nl', 'an', 'nc', 'nz', 'ni',
50
+ 'ne', 'ng', 'nu', 'nf', 'mp', 'no', 'om', 'pk', 'pw', 'ps', 'pa', 'pg', 'py', 'pe',
51
+ 'ph', 'pn', 'pl', 'pt', 'pr', 'qa', 're', 'ro', 'ru', 'rw', 'sh', 'kn', 'lc', 'pm',
52
+ 'vc', 'ws', 'sm', 'st', 'sa', 'sn', 'rs', 'sc', 'sl', 'sg', 'sk', 'si', 'sb', 'so',
53
+ 'za', 'gs', 'es', 'lk', 'sd', 'sr', 'sj', 'sz', 'se', 'ch', 'sy', 'tw', 'tj', 'tz',
54
+ 'th', 'tl', 'tg', 'tk', 'to', 'tt', 'tn', 'tr', 'tm', 'tc', 'tv', 'ug', 'ua', 'ae',
55
+ 'uk', 'gb', 'us', 'um', 'uy', 'uz', 'vu', 've', 'vn', 'vg', 'vi', 'wf', 'eh', 'ye',
56
+ 'zm', 'zw'])
57
+ self.check_valid_value(self.language, "Google languages",
58
+ ['af', 'ak', 'sq', 'ws', 'am', 'ar', 'hy', 'az', 'eu', 'be', 'bem', 'bn', 'bh',
59
+ 'xx-bork', 'bs', 'br', 'bg', 'bt', 'km', 'ca', 'chr', 'ny', 'zh-cn', 'zh-tw', 'co',
60
+ 'hr', 'cs', 'da', 'nl', 'xx-elmer', 'en', 'eo', 'et', 'ee', 'fo', 'tl', 'fi', 'fr',
61
+ 'fy', 'gaa', 'gl', 'ka', 'de', 'el', 'kl', 'gn', 'gu', 'xx-hacker', 'ht', 'ha', 'haw',
62
+ 'iw', 'hi', 'hu', 'is', 'ig', 'id', 'ia', 'ga', 'it', 'ja', 'jw', 'kn', 'kk', 'rw',
63
+ 'rn', 'xx-klingon', 'kg', 'ko', 'kri', 'ku', 'ckb', 'ky', 'lo', 'la', 'lv', 'ln', 'lt',
64
+ 'loz', 'lg', 'ach', 'mk', 'mg', 'ms', 'ml', 'mt', 'mv', 'mi', 'mr', 'mfe', 'mo', 'mn',
65
+ 'sr-me', 'my', 'ne', 'pcm', 'nso', 'no', 'nn', 'oc', 'or', 'om', 'ps', 'fa',
66
+ 'xx-pirate', 'pl', 'pt', 'pt-br', 'pt-pt', 'pa', 'qu', 'ro', 'rm', 'nyn', 'ru', 'gd',
67
+ 'sr', 'sh', 'st', 'tn', 'crs', 'sn', 'sd', 'si', 'sk', 'sl', 'so', 'es', 'es-419', 'su',
68
+ 'sw', 'sv', 'tg', 'ta', 'tt', 'te', 'th', 'ti', 'to', 'lua', 'tum', 'tr', 'tk', 'tw',
69
+ 'ug', 'uk', 'ur', 'uz', 'vu', 'vi', 'cy', 'wo', 'xh', 'yi', 'yo', 'zu']
70
+ )
71
+
72
+
73
+ class Google(ComponentBase, ABC):
74
+ component_name = "Google"
75
+
76
+ def _run(self, history, **kwargs):
77
+ ans = self.get_input()
78
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
79
+ if not ans:
80
+ return Google.be_output("")
81
+
82
+ try:
83
+ client = GoogleSearch(
84
+ {"engine": "google", "q": ans, "api_key": self._param.api_key, "gl": self._param.country,
85
+ "hl": self._param.language, "num": self._param.top_n})
86
+ google_res = [{"content": '<a href="' + i["link"] + '">' + i["title"] + '</a> ' + i["snippet"]} for i in
87
+ client.get_dict()["organic_results"]]
88
+ except Exception as e:
89
+ return Google.be_output("**ERROR**: Existing Unavailable Parameters!")
90
+
91
+ if not google_res:
92
+ return Google.be_output("")
93
+
94
+ df = pd.DataFrame(google_res)
95
+ if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
96
+ return df
agent/component/googlescholar.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ import pandas as pd
18
+ from agent.settings import DEBUG
19
+ from agent.component.base import ComponentBase, ComponentParamBase
20
+ from scholarly import scholarly
21
+
22
+
23
+ class GoogleScholarParam(ComponentParamBase):
24
+ """
25
+ Define the GoogleScholar component parameters.
26
+ """
27
+
28
+ def __init__(self):
29
+ super().__init__()
30
+ self.top_n = 6
31
+ self.sort_by = 'relevance'
32
+ self.year_low = None
33
+ self.year_high = None
34
+ self.patents = True
35
+
36
+ def check(self):
37
+ self.check_positive_integer(self.top_n, "Top N")
38
+ self.check_valid_value(self.sort_by, "GoogleScholar Sort_by", ['date', 'relevance'])
39
+ self.check_boolean(self.patents, "Whether or not to include patents, defaults to True")
40
+
41
+
42
+ class GoogleScholar(ComponentBase, ABC):
43
+ component_name = "GoogleScholar"
44
+
45
+ def _run(self, history, **kwargs):
46
+ ans = self.get_input()
47
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
48
+ if not ans:
49
+ return GoogleScholar.be_output("")
50
+
51
+ scholar_client = scholarly.search_pubs(ans, patents=self._param.patents, year_low=self._param.year_low,
52
+ year_high=self._param.year_high, sort_by=self._param.sort_by)
53
+ scholar_res = []
54
+ for i in range(self._param.top_n):
55
+ try:
56
+ pub = next(scholar_client)
57
+ scholar_res.append({"content": 'Title: ' + pub['bib']['title'] + '\n_Url: <a href="' + pub[
58
+ 'pub_url'] + '"></a> ' + "\n author: " + ",".join(pub['bib']['author']) + '\n Abstract: ' + pub[
59
+ 'bib'].get('abstract', 'no abstract')})
60
+
61
+ except StopIteration or Exception as e:
62
+ print("**ERROR** " + str(e))
63
+ break
64
+
65
+ if not scholar_res:
66
+ return GoogleScholar.be_output("")
67
+
68
+ df = pd.DataFrame(scholar_res)
69
+ if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
70
+ return df
agent/component/keyword.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ import re
17
+ from abc import ABC
18
+ from api.db import LLMType
19
+ from api.db.services.llm_service import LLMBundle
20
+ from agent.component import GenerateParam, Generate
21
+ from agent.settings import DEBUG
22
+
23
+
24
+ class KeywordExtractParam(GenerateParam):
25
+ """
26
+ Define the KeywordExtract component parameters.
27
+ """
28
+
29
+ def __init__(self):
30
+ super().__init__()
31
+ self.top_n = 1
32
+
33
+ def check(self):
34
+ super().check()
35
+ self.check_positive_integer(self.top_n, "Top N")
36
+
37
+ def get_prompt(self):
38
+ self.prompt = """
39
+ - Role: You're a question analyzer.
40
+ - Requirements:
41
+ - Summarize user's question, and give top %s important keyword/phrase.
42
+ - Use comma as a delimiter to separate keywords/phrases.
43
+ - Answer format: (in language of user's question)
44
+ - keyword:
45
+ """ % self.top_n
46
+ return self.prompt
47
+
48
+
49
+ class KeywordExtract(Generate, ABC):
50
+ component_name = "KeywordExtract"
51
+
52
+ def _run(self, history, **kwargs):
53
+ q = ""
54
+ for r, c in self._canvas.history[::-1]:
55
+ if r == "user":
56
+ q += c
57
+ break
58
+
59
+ chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
60
+ ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}],
61
+ self._param.gen_conf())
62
+
63
+ ans = re.sub(r".*keyword:", "", ans).strip()
64
+ if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::")
65
+ return KeywordExtract.be_output(ans)
agent/component/message.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ import random
17
+ from abc import ABC
18
+ from functools import partial
19
+ from agent.component.base import ComponentBase, ComponentParamBase
20
+
21
+
22
+ class MessageParam(ComponentParamBase):
23
+
24
+ """
25
+ Define the Message component parameters.
26
+ """
27
+ def __init__(self):
28
+ super().__init__()
29
+ self.messages = []
30
+
31
+ def check(self):
32
+ self.check_empty(self.messages, "[Message]")
33
+ return True
34
+
35
+
36
+ class Message(ComponentBase, ABC):
37
+ component_name = "Message"
38
+
39
+ def _run(self, history, **kwargs):
40
+ if kwargs.get("stream"):
41
+ return partial(self.stream_output)
42
+
43
+ return Message.be_output(random.choice(self._param.messages))
44
+
45
+ def stream_output(self):
46
+ res = None
47
+ if self._param.messages:
48
+ res = {"content": random.choice(self._param.messages)}
49
+ yield res
50
+
51
+ self.set_output(res)
52
+
53
+
agent/component/pubmed.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ from Bio import Entrez
18
+ import pandas as pd
19
+ import xml.etree.ElementTree as ET
20
+ from agent.settings import DEBUG
21
+ from agent.component.base import ComponentBase, ComponentParamBase
22
+
23
+
24
+ class PubMedParam(ComponentParamBase):
25
+ """
26
+ Define the PubMed component parameters.
27
+ """
28
+
29
+ def __init__(self):
30
+ super().__init__()
31
+ self.top_n = 5
32
+ self.email = "A.N.Other@example.com"
33
+
34
+ def check(self):
35
+ self.check_positive_integer(self.top_n, "Top N")
36
+
37
+
38
+ class PubMed(ComponentBase, ABC):
39
+ component_name = "PubMed"
40
+
41
+ def _run(self, history, **kwargs):
42
+ ans = self.get_input()
43
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
44
+ if not ans:
45
+ return PubMed.be_output("")
46
+
47
+ try:
48
+ Entrez.email = self._param.email
49
+ pubmedids = Entrez.read(Entrez.esearch(db='pubmed', retmax=self._param.top_n, term=ans))['IdList']
50
+ pubmedcnt = ET.fromstring(
51
+ Entrez.efetch(db='pubmed', id=",".join(pubmedids), retmode="xml").read().decode("utf-8"))
52
+ pubmed_res = [{"content": 'Title:' + child.find("MedlineCitation").find("Article").find(
53
+ "ArticleTitle").text + '\nUrl:<a href=" https://pubmed.ncbi.nlm.nih.gov/' + child.find(
54
+ "MedlineCitation").find("PMID").text + '">' + '</a>\n' + 'Abstract:' + child.find(
55
+ "MedlineCitation").find("Article").find("Abstract").find("AbstractText").text} for child in
56
+ pubmedcnt.findall("PubmedArticle")]
57
+ except Exception as e:
58
+ return PubMed.be_output("**ERROR**: " + str(e))
59
+
60
+ if not pubmed_res:
61
+ return PubMed.be_output("")
62
+
63
+ df = pd.DataFrame(pubmed_res)
64
+ if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
65
+ return df
agent/component/qweather.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ import pandas as pd
18
+ import requests
19
+ from agent.component.base import ComponentBase, ComponentParamBase
20
+
21
+
22
+ class QWeatherParam(ComponentParamBase):
23
+ """
24
+ Define the QWeather component parameters.
25
+ """
26
+
27
+ def __init__(self):
28
+ super().__init__()
29
+ self.web_apikey = "xxx"
30
+ self.lang = "zh"
31
+ self.type = "weather"
32
+ self.user_type = 'free'
33
+ self.error_code = {
34
+ "204": "The request was successful, but the region you are querying does not have the data you need at this time.",
35
+ "400": "Request error, may contain incorrect request parameters or missing mandatory request parameters.",
36
+ "401": "Authentication fails, possibly using the wrong KEY, wrong digital signature, wrong type of KEY (e.g. using the SDK's KEY to access the Web API).",
37
+ "402": "Exceeded the number of accesses or the balance is not enough to support continued access to the service, you can recharge, upgrade the accesses or wait for the accesses to be reset.",
38
+ "403": "No access, may be the binding PackageName, BundleID, domain IP address is inconsistent, or the data that requires additional payment.",
39
+ "404": "The queried data or region does not exist.",
40
+ "429": "Exceeded the limited QPM (number of accesses per minute), please refer to the QPM description",
41
+ "500": "No response or timeout, interface service abnormality please contact us"
42
+ }
43
+ # Weather
44
+ self.time_period = 'now'
45
+
46
+ def check(self):
47
+ self.check_empty(self.web_apikey, "BaiduFanyi APPID")
48
+ self.check_valid_value(self.type, "Type", ["weather", "indices", "airquality"])
49
+ self.check_valid_value(self.user_type, "Free subscription or paid subscription", ["free", "paid"])
50
+ self.check_valid_value(self.lang, "Use language",
51
+ ['zh', 'zh-hant', 'en', 'de', 'es', 'fr', 'it', 'ja', 'ko', 'ru', 'hi', 'th', 'ar', 'pt',
52
+ 'bn', 'ms', 'nl', 'el', 'la', 'sv', 'id', 'pl', 'tr', 'cs', 'et', 'vi', 'fil', 'fi',
53
+ 'he', 'is', 'nb'])
54
+ self.check_vaild_value(self.time_period, "Time period", ['now', '3d', '7d', '10d', '15d', '30d'])
55
+
56
+
57
+ class QWeather(ComponentBase, ABC):
58
+ component_name = "QWeather"
59
+
60
+ def _run(self, history, **kwargs):
61
+ ans = self.get_input()
62
+ ans = "".join(ans["content"]) if "content" in ans else ""
63
+ if not ans:
64
+ return QWeather.be_output("")
65
+
66
+ try:
67
+ response = requests.get(
68
+ url="https://geoapi.qweather.com/v2/city/lookup?location=" + ans + "&key=" + self._param.web_apikey).json()
69
+ if response["code"] == "200":
70
+ location_id = response["location"][0]["id"]
71
+ else:
72
+ return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
73
+
74
+ base_url = "https://api.qweather.com/v7/" if self._param.user_type == 'paid' else "https://devapi.qweather.com/v7/"
75
+
76
+ if self._param.type == "weather":
77
+ url = base_url + "weather/" + self._param.time_period + "?location=" + location_id + "&key=" + self._param.web_apikey + "&lang=" + self._param.lang
78
+ response = requests.get(url=url).json()
79
+ if response["code"] == "200":
80
+ if self._param.time_period == "now":
81
+ return QWeather.be_output(str(response["now"]))
82
+ else:
83
+ qweather_res = [{"content": str(i) + "\n"} for i in response["daily"]]
84
+ if not qweather_res:
85
+ return QWeather.be_output("")
86
+
87
+ df = pd.DataFrame(qweather_res)
88
+ return df
89
+ else:
90
+ return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
91
+
92
+ elif self._param.type == "indices":
93
+ url = base_url + "indices/1d?type=0&location=" + location_id + "&key=" + self._param.web_apikey + "&lang=" + self._param.lang
94
+ response = requests.get(url=url).json()
95
+ if response["code"] == "200":
96
+ indices_res = response["daily"][0]["date"] + "\n" + "\n".join(
97
+ [i["name"] + ": " + i["category"] + ", " + i["text"] for i in response["daily"]])
98
+ return QWeather.be_output(indices_res)
99
+
100
+ else:
101
+ return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
102
+
103
+ elif self._param.type == "airquality":
104
+ url = base_url + "air/now?location=" + location_id + "&key=" + self._param.web_apikey + "&lang=" + self._param.lang
105
+ response = requests.get(url=url).json()
106
+ if response["code"] == "200":
107
+ return QWeather.be_output(str(response["now"]))
108
+ else:
109
+ return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
110
+ except Exception as e:
111
+ return QWeather.be_output("**Error**" + str(e))
agent/component/relevant.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ from api.db import LLMType
18
+ from api.db.services.llm_service import LLMBundle
19
+ from agent.component import GenerateParam, Generate
20
+ from rag.utils import num_tokens_from_string, encoder
21
+
22
+
23
+ class RelevantParam(GenerateParam):
24
+
25
+ """
26
+ Define the Relevant component parameters.
27
+ """
28
+ def __init__(self):
29
+ super().__init__()
30
+ self.prompt = ""
31
+ self.yes = ""
32
+ self.no = ""
33
+
34
+ def check(self):
35
+ super().check()
36
+ self.check_empty(self.yes, "[Relevant] 'Yes'")
37
+ self.check_empty(self.no, "[Relevant] 'No'")
38
+
39
+ def get_prompt(self):
40
+ self.prompt = """
41
+ You are a grader assessing relevance of a retrieved document to a user question.
42
+ It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
43
+ If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
44
+ Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
45
+ No other words needed except 'yes' or 'no'.
46
+ """
47
+ return self.prompt
48
+
49
+
50
+ class Relevant(Generate, ABC):
51
+ component_name = "Relevant"
52
+
53
+ def _run(self, history, **kwargs):
54
+ q = ""
55
+ for r, c in self._canvas.history[::-1]:
56
+ if r == "user":
57
+ q = c
58
+ break
59
+ ans = self.get_input()
60
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
61
+ if not ans:
62
+ return Relevant.be_output(self._param.no)
63
+ ans = "Documents: \n" + ans
64
+ ans = f"Question: {q}\n" + ans
65
+ chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
66
+
67
+ if num_tokens_from_string(ans) >= chat_mdl.max_length - 4:
68
+ ans = encoder.decode(encoder.encode(ans)[:chat_mdl.max_length - 4])
69
+
70
+ ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": ans}],
71
+ self._param.gen_conf())
72
+
73
+ print(ans, ":::::::::::::::::::::::::::::::::")
74
+ if ans.lower().find("yes") >= 0:
75
+ return Relevant.be_output(self._param.yes)
76
+ if ans.lower().find("no") >= 0:
77
+ return Relevant.be_output(self._param.no)
78
+ assert False, f"Relevant component got: {ans}"
79
+
80
+
agent/component/retrieval.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+
18
+ import pandas as pd
19
+
20
+ from api.db import LLMType
21
+ from api.db.services.knowledgebase_service import KnowledgebaseService
22
+ from api.db.services.llm_service import LLMBundle
23
+ from api.settings import retrievaler
24
+ from agent.component.base import ComponentBase, ComponentParamBase
25
+
26
+
27
+ class RetrievalParam(ComponentParamBase):
28
+
29
+ """
30
+ Define the Retrieval component parameters.
31
+ """
32
+ def __init__(self):
33
+ super().__init__()
34
+ self.similarity_threshold = 0.2
35
+ self.keywords_similarity_weight = 0.5
36
+ self.top_n = 8
37
+ self.top_k = 1024
38
+ self.kb_ids = []
39
+ self.rerank_id = ""
40
+ self.empty_response = ""
41
+
42
+ def check(self):
43
+ self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
44
+ self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keywords similarity weight")
45
+ self.check_positive_number(self.top_n, "[Retrieval] Top N")
46
+ self.check_empty(self.kb_ids, "[Retrieval] Knowledge bases")
47
+
48
+
49
+ class Retrieval(ComponentBase, ABC):
50
+ component_name = "Retrieval"
51
+
52
+ def _run(self, history, **kwargs):
53
+ query = []
54
+ for role, cnt in history[::-1][:self._param.message_history_window_size]:
55
+ if role != "user":continue
56
+ query.append(cnt)
57
+ query = "\n".join(query)
58
+
59
+ kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
60
+ if not kbs:
61
+ raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
62
+ embd_nms = list(set([kb.embd_id for kb in kbs]))
63
+ assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
64
+
65
+ embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
66
+ self._canvas.set_embedding_model(embd_nms[0])
67
+
68
+ rerank_mdl = None
69
+ if self._param.rerank_id:
70
+ rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
71
+
72
+ kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
73
+ 1, self._param.top_n,
74
+ self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
75
+ aggs=False, rerank_mdl=rerank_mdl)
76
+
77
+ if not kbinfos["chunks"]:
78
+ df = Retrieval.be_output(self._param.empty_response)
79
+ df["empty_response"] = True
80
+ return df
81
+
82
+ df = pd.DataFrame(kbinfos["chunks"])
83
+ df["content"] = df["content_with_weight"]
84
+ del df["content_with_weight"]
85
+ print(">>>>>>>>>>>>>>>>>>>>>>>>>>\n", query, df)
86
+ return df
87
+
88
+
agent/component/rewrite.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+ from api.db import LLMType
18
+ from api.db.services.llm_service import LLMBundle
19
+ from agent.component import GenerateParam, Generate
20
+
21
+
22
+ class RewriteQuestionParam(GenerateParam):
23
+
24
+ """
25
+ Define the QuestionRewrite component parameters.
26
+ """
27
+ def __init__(self):
28
+ super().__init__()
29
+ self.temperature = 0.9
30
+ self.prompt = ""
31
+ self.loop = 1
32
+
33
+ def check(self):
34
+ super().check()
35
+
36
+ def get_prompt(self):
37
+ self.prompt = """
38
+ You are an expert at query expansion to generate a paraphrasing of a question.
39
+ I can't retrieval relevant information from the knowledge base by using user's question directly.
40
+ You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
41
+ writing the abbreviation in its entirety, adding some extra descriptions or explanations,
42
+ changing the way of expression, translating the original question into another language (English/Chinese), etc.
43
+ And return 5 versions of question and one is from translation.
44
+ Just list the question. No other words are needed.
45
+ """
46
+ return self.prompt
47
+
48
+
49
+ class RewriteQuestion(Generate, ABC):
50
+ component_name = "RewriteQuestion"
51
+
52
+ def _run(self, history, **kwargs):
53
+ if not hasattr(self, "_loop"):
54
+ setattr(self, "_loop", 0)
55
+ if self._loop >= self._param.loop:
56
+ self._loop = 0
57
+ raise Exception("Maximum loop time exceeds. Can't find relevant information.")
58
+ self._loop += 1
59
+ q = "Question: "
60
+ for r, c in self._canvas.history[::-1]:
61
+ if r == "user":
62
+ q += c
63
+ break
64
+
65
+ chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
66
+ ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}],
67
+ self._param.gen_conf())
68
+
69
+ print(ans, ":::::::::::::::::::::::::::::::::")
70
+ return RewriteQuestion.be_output(ans)
71
+
72
+
agent/component/switch.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ from abc import ABC
17
+
18
+ import pandas as pd
19
+ from agent.component.base import ComponentBase, ComponentParamBase
20
+
21
+
22
+ class SwitchParam(ComponentParamBase):
23
+
24
+ """
25
+ Define the Switch component parameters.
26
+ """
27
+ def __init__(self):
28
+ super().__init__()
29
+ """
30
+ {
31
+ "cpn_id": "categorize:0",
32
+ "not": False,
33
+ "operator": "gt/gte/lt/lte/eq/in",
34
+ "value": "",
35
+ "to": ""
36
+ }
37
+ """
38
+ self.conditions = []
39
+ self.default = ""
40
+
41
+ def check(self):
42
+ self.check_empty(self.conditions, "[Switch] conditions")
43
+ self.check_empty(self.default, "[Switch] Default path")
44
+ for cond in self.conditions:
45
+ if not cond["to"]: raise ValueError(f"[Switch] 'To' can not be empty!")
46
+
47
+ def operators(self, field, op, value):
48
+ if op == "gt":
49
+ return float(field) > float(value)
50
+ if op == "gte":
51
+ return float(field) >= float(value)
52
+ if op == "lt":
53
+ return float(field) < float(value)
54
+ if op == "lte":
55
+ return float(field) <= float(value)
56
+ if op == "eq":
57
+ return str(field) == str(value)
58
+ if op == "in":
59
+ return str(field).find(str(value)) >= 0
60
+ return False
61
+
62
+
63
+ class Switch(ComponentBase, ABC):
64
+ component_name = "Switch"
65
+
66
+ def _run(self, history, **kwargs):
67
+ for cond in self._param.conditions:
68
+ input = self._canvas.get_component(cond["cpn_id"])["obj"].output()[1]
69
+ if self._param.operators(input.iloc[0, 0], cond["operator"], cond["value"]):
70
+ if not cond["not"]:
71
+ return pd.DataFrame([{"content": cond["to"]}])
72
+
73
+ return pd.DataFrame([{"content": self._param.default}])
74
+
75
+
76
+
77
+
agent/component/wikipedia.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ import random
17
+ from abc import ABC
18
+ from functools import partial
19
+ import wikipedia
20
+ import pandas as pd
21
+ from agent.settings import DEBUG
22
+ from agent.component.base import ComponentBase, ComponentParamBase
23
+
24
+
25
+ class WikipediaParam(ComponentParamBase):
26
+ """
27
+ Define the Wikipedia component parameters.
28
+ """
29
+
30
+ def __init__(self):
31
+ super().__init__()
32
+ self.top_n = 10
33
+ self.language = "en"
34
+
35
+ def check(self):
36
+ self.check_positive_integer(self.top_n, "Top N")
37
+ self.check_valid_value(self.language, "Wikipedia languages",
38
+ ['af', 'pl', 'ar', 'ast', 'az', 'bg', 'nan', 'bn', 'be', 'ca', 'cs', 'cy', 'da', 'de',
39
+ 'et', 'el', 'en', 'es', 'eo', 'eu', 'fa', 'fr', 'gl', 'ko', 'hy', 'hi', 'hr', 'id',
40
+ 'it', 'he', 'ka', 'lld', 'la', 'lv', 'lt', 'hu', 'mk', 'arz', 'ms', 'min', 'my', 'nl',
41
+ 'ja', 'nb', 'nn', 'ce', 'uz', 'pt', 'kk', 'ro', 'ru', 'ceb', 'sk', 'sl', 'sr', 'sh',
42
+ 'fi', 'sv', 'ta', 'tt', 'th', 'tg', 'azb', 'tr', 'uk', 'ur', 'vi', 'war', 'zh', 'yue'])
43
+
44
+
45
+ class Wikipedia(ComponentBase, ABC):
46
+ component_name = "Wikipedia"
47
+
48
+ def _run(self, history, **kwargs):
49
+ ans = self.get_input()
50
+ ans = " - ".join(ans["content"]) if "content" in ans else ""
51
+ if not ans:
52
+ return Wikipedia.be_output("")
53
+
54
+ try:
55
+ wiki_res = []
56
+ wikipedia.set_lang(self._param.language)
57
+ wiki_engine = wikipedia
58
+ for wiki_key in wiki_engine.search(ans, results=self._param.top_n):
59
+ page = wiki_engine.page(title=wiki_key, auto_suggest=False)
60
+ wiki_res.append({"content": '<a href="' + page.url + '">' + page.title + '</a> ' + page.summary})
61
+ except Exception as e:
62
+ return Wikipedia.be_output("**ERROR**: " + str(e))
63
+
64
+ if not wiki_res:
65
+ return Wikipedia.be_output("")
66
+
67
+ df = pd.DataFrame(wiki_res)
68
+ if DEBUG: print(df, ":::::::::::::::::::::::::::::::::")
69
+ return df
agent/settings.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2019 The FATE Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ # Logger
17
+ import os
18
+
19
+ from api.utils.file_utils import get_project_base_directory
20
+ from api.utils.log_utils import LoggerFactory, getLogger
21
+
22
+ DEBUG = 0
23
+ LoggerFactory.set_directory(
24
+ os.path.join(
25
+ get_project_base_directory(),
26
+ "logs",
27
+ "flow"))
28
+ # {CRITICAL: 50, FATAL:50, ERROR:40, WARNING:30, WARN:30, INFO:20, DEBUG:10, NOTSET:0}
29
+ LoggerFactory.LEVEL = 30
30
+
31
+ flow_logger = getLogger("flow")
32
+ database_logger = getLogger("database")
33
+ FLOAT_ZERO = 1e-8
34
+ PARAM_MAXDEPTH = 5
agent/templates/HR_callout_zh.json ADDED
The diff for this file is too large to render. See raw diff
 
agent/templates/customer_service.json ADDED
@@ -0,0 +1,620 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "id": 3,
3
+ "title": "Customer service",
4
+ "description": "A call-in customer service chat bot. It will provide useful information about the products, answer customers' questions and soothe the customers' bad emotions.",
5
+ "canvas_type": "chatbot",
6
+ "dsl": {
7
+ "answer": [],
8
+ "components": {
9
+ "answer:0": {
10
+ "downstream": ["categorize:0", "generate:complain"],
11
+ "obj": {
12
+ "component_name": "Answer",
13
+ "params": {}
14
+ },
15
+ "upstream": [
16
+ "begin",
17
+ "message:get_contact",
18
+ "generate:casual",
19
+ "generate:answer",
20
+ "generate:ask_contact"
21
+ ]
22
+ },
23
+ "begin": {
24
+ "downstream": ["answer:0"],
25
+ "obj": {
26
+ "component_name": "Begin",
27
+ "params": {
28
+ "prologue": "Hi! How can I help you?"
29
+ }
30
+ },
31
+ "upstream": []
32
+ },
33
+ "categorize:0": {
34
+ "downstream": [
35
+ "generate:casual",
36
+ "generate:complain",
37
+ "message:get_contact",
38
+ "retrieval:0"
39
+ ],
40
+ "obj": {
41
+ "component_name": "Categorize",
42
+ "params": {
43
+ "category_description": {
44
+ "answer": {
45
+ "description": "This answer provide a specific contact information, like e-mail, phone number, wechat number, line number, twitter, discord, etc,.",
46
+ "examples": "My phone number is 203921\nkevinhu.hk@gmail.com\nThis is my discord number: johndowson_29384",
47
+ "to": "message:get_contact"
48
+ },
49
+ "casual": {
50
+ "description": "The question is not about the product usage, appearance and how it works. Just casual chat.",
51
+ "examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
52
+ "to": "generate:casual"
53
+ },
54
+ "complain": {
55
+ "description": "Complain even curse about the product or service you provide. But the comment is not specific enough.",
56
+ "examples": "How bad is it.\nIt's really sucks.\nDamn, for God's sake, can it be more steady?\nShit, I just can't use this shit.\nI can't stand it anymore.",
57
+ "to": "generate:complain"
58
+ },
59
+ "product_related": {
60
+ "description": "The question is about the product usage, appearance and how it works.",
61
+ "examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?\nException: Can't connect to ES cluster\nHow to build the RAGFlow image from scratch",
62
+ "to": "retrieval:0"
63
+ }
64
+ },
65
+ "llm_id": "deepseek-chat",
66
+ "message_history_window_size": 8
67
+ }
68
+ },
69
+ "upstream": ["answer:0"]
70
+ },
71
+ "generate:answer": {
72
+ "downstream": ["answer:0"],
73
+ "obj": {
74
+ "component_name": "Generate",
75
+ "params": {
76
+ "llm_id": "deepseek-chat",
77
+ "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base."
78
+ }
79
+ },
80
+ "upstream": ["relevant:0"]
81
+ },
82
+ "generate:ask_contact": {
83
+ "downstream": ["answer:0"],
84
+ "obj": {
85
+ "component_name": "Generate",
86
+ "params": {
87
+ "cite": false,
88
+ "llm_id": "deepseek-chat",
89
+ "message_history_window_size": 12,
90
+ "prompt": "You are a customer support. But you can't answer to customers' question. You need to request their contact like E-mail, phone number, Wechat number, LINE number, twitter, discord, etc,. Product experts will contact them later. Please do not ask the same question twice."
91
+ }
92
+ },
93
+ "upstream": ["relevant:0"]
94
+ },
95
+ "generate:casual": {
96
+ "downstream": ["answer:0"],
97
+ "obj": {
98
+ "component_name": "Generate",
99
+ "params": {
100
+ "cite": false,
101
+ "llm_id": "deepseek-chat",
102
+ "message_history_window_size": 12,
103
+ "prompt": "You are a customer support. But the customer wants to have a casual chat with you instead of consulting about the product. Be nice, funny, enthusiasm and concern."
104
+ }
105
+ },
106
+ "upstream": ["categorize:0"]
107
+ },
108
+ "generate:complain": {
109
+ "downstream": ["answer:0"],
110
+ "obj": {
111
+ "component_name": "Generate",
112
+ "params": {
113
+ "cite": false,
114
+ "llm_id": "deepseek-chat",
115
+ "message_history_window_size": 12,
116
+ "prompt": "You are a customer support. the Customers complain even curse about the products but not specific enough. You need to ask him/her what's the specific problem with the product. Be nice, patient and concern to soothe your customers’ emotions at first place."
117
+ }
118
+ },
119
+ "upstream": ["categorize:0"]
120
+ },
121
+ "message:get_contact": {
122
+ "downstream": ["answer:0"],
123
+ "obj": {
124
+ "component_name": "Message",
125
+ "params": {
126
+ "messages": [
127
+ "Okay, I've already write this down. What else I can do for you?",
128
+ "Get it. What else I can do for you?",
129
+ "Thanks for your trust! Our expert will contact ASAP. So, anything else I can do for you?",
130
+ "Thanks! So, anything else I can do for you?"
131
+ ]
132
+ }
133
+ },
134
+ "upstream": ["categorize:0"]
135
+ },
136
+ "relevant:0": {
137
+ "downstream": ["generate:answer", "generate:ask_contact"],
138
+ "obj": {
139
+ "component_name": "Relevant",
140
+ "params": {
141
+ "llm_id": "deepseek-chat",
142
+ "no": "generate:ask_contact",
143
+ "temperature": 0.02,
144
+ "yes": "generate:answer"
145
+ }
146
+ },
147
+ "upstream": ["retrieval:0"]
148
+ },
149
+ "retrieval:0": {
150
+ "downstream": ["relevant:0"],
151
+ "obj": {
152
+ "component_name": "Retrieval",
153
+ "params": {
154
+ "kb_ids": [],
155
+ "keywords_similarity_weight": 0.3,
156
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
157
+ "similarity_threshold": 0.2,
158
+ "top_k": 1024,
159
+ "top_n": 6
160
+ }
161
+ },
162
+ "upstream": ["categorize:0"]
163
+ }
164
+ },
165
+ "graph": {
166
+ "edges": [
167
+ {
168
+ "id": "63a2f242-8e71-4098-a46a-459a76d538bd",
169
+ "label": "",
170
+ "source": "begin",
171
+ "target": "answer:0"
172
+ },
173
+ {
174
+ "id": "7f68384d-3441-4bfa-bf13-69af67e857d2",
175
+ "label": "",
176
+ "source": "categorize:0",
177
+ "sourceHandle": "casual",
178
+ "target": "generate:casual"
179
+ },
180
+ {
181
+ "id": "c9bf8e81-9345-4885-b565-be2f5b16f6ef",
182
+ "label": "",
183
+ "source": "categorize:0",
184
+ "sourceHandle": "complain",
185
+ "target": "generate:complain"
186
+ },
187
+ {
188
+ "id": "2f326699-621b-4d28-ab98-70d99ad21add",
189
+ "label": "",
190
+ "source": "categorize:0",
191
+ "sourceHandle": "answer",
192
+ "target": "message:get_contact"
193
+ },
194
+ {
195
+ "id": "reactflow__edge-relevant:0yes-generate:answerc",
196
+ "source": "relevant:0",
197
+ "sourceHandle": "yes",
198
+ "target": "generate:answer",
199
+ "targetHandle": "c"
200
+ },
201
+ {
202
+ "id": "reactflow__edge-relevant:0no-generate:ask_contactc",
203
+ "source": "relevant:0",
204
+ "sourceHandle": "no",
205
+ "target": "generate:ask_contact",
206
+ "targetHandle": "c"
207
+ },
208
+ {
209
+ "id": "reactflow__edge-message:get_contactb-answer:0c",
210
+ "markerEnd": "logo",
211
+ "source": "message:get_contact",
212
+ "sourceHandle": "b",
213
+ "style": {
214
+ "stroke": "rgb(202 197 245)",
215
+ "strokeWidth": 2
216
+ },
217
+ "target": "answer:0",
218
+ "targetHandle": "c",
219
+ "type": "buttonEdge"
220
+ },
221
+ {
222
+ "id": "reactflow__edge-generate:casualb-answer:0d",
223
+ "markerEnd": "logo",
224
+ "source": "generate:casual",
225
+ "sourceHandle": "b",
226
+ "style": {
227
+ "stroke": "rgb(202 197 245)",
228
+ "strokeWidth": 2
229
+ },
230
+ "target": "answer:0",
231
+ "targetHandle": "d",
232
+ "type": "buttonEdge"
233
+ },
234
+ {
235
+ "id": "reactflow__edge-generate:answerb-answer:0d",
236
+ "markerEnd": "logo",
237
+ "source": "generate:answer",
238
+ "sourceHandle": "b",
239
+ "style": {
240
+ "stroke": "rgb(202 197 245)",
241
+ "strokeWidth": 2
242
+ },
243
+ "target": "answer:0",
244
+ "targetHandle": "d",
245
+ "type": "buttonEdge"
246
+ },
247
+ {
248
+ "id": "reactflow__edge-categorize:0product_related-retrieval:0a",
249
+ "markerEnd": "logo",
250
+ "source": "categorize:0",
251
+ "sourceHandle": "product_related",
252
+ "style": {
253
+ "stroke": "rgb(202 197 245)",
254
+ "strokeWidth": 2
255
+ },
256
+ "target": "retrieval:0",
257
+ "targetHandle": "a",
258
+ "type": "buttonEdge"
259
+ },
260
+ {
261
+ "id": "reactflow__edge-retrieval:0d-relevant:0c",
262
+ "markerEnd": "logo",
263
+ "source": "retrieval:0",
264
+ "sourceHandle": "d",
265
+ "style": {
266
+ "stroke": "rgb(202 197 245)",
267
+ "strokeWidth": 2
268
+ },
269
+ "target": "relevant:0",
270
+ "targetHandle": "c",
271
+ "type": "buttonEdge"
272
+ },
273
+ {
274
+ "id": "reactflow__edge-answer:0c-categorize:0c",
275
+ "markerEnd": "logo",
276
+ "source": "answer:0",
277
+ "sourceHandle": "c",
278
+ "style": {
279
+ "stroke": "rgb(202 197 245)",
280
+ "strokeWidth": 2
281
+ },
282
+ "target": "categorize:0",
283
+ "targetHandle": "c",
284
+ "type": "buttonEdge"
285
+ },
286
+ {
287
+ "id": "reactflow__edge-answer:0a-generate:complaind",
288
+ "markerEnd": "logo",
289
+ "source": "generate:complain",
290
+ "sourceHandle": "a",
291
+ "style": {
292
+ "stroke": "rgb(202 197 245)",
293
+ "strokeWidth": 2
294
+ },
295
+ "target": "answer:0",
296
+ "targetHandle": "d",
297
+ "type": "buttonEdge"
298
+ },
299
+ {
300
+ "id": "reactflow__edge-generate:ask_contacta-answer:0d",
301
+ "markerEnd": "logo",
302
+ "source": "generate:ask_contact",
303
+ "sourceHandle": "a",
304
+ "style": {
305
+ "stroke": "rgb(202 197 245)",
306
+ "strokeWidth": 2
307
+ },
308
+ "target": "answer:0",
309
+ "targetHandle": "d",
310
+ "type": "buttonEdge"
311
+ }
312
+ ],
313
+ "nodes": [
314
+ {
315
+ "data": {
316
+ "form": {
317
+ "prologue": "Hi! How can I help you?"
318
+ },
319
+ "label": "Begin",
320
+ "name": "Opener"
321
+ },
322
+ "dragging": false,
323
+ "height": 50,
324
+ "id": "begin",
325
+ "position": {
326
+ "x": 404.55092213629115,
327
+ "y": 296.8772566137603
328
+ },
329
+ "positionAbsolute": {
330
+ "x": 404.55092213629115,
331
+ "y": 296.8772566137603
332
+ },
333
+ "selected": false,
334
+ "sourcePosition": "left",
335
+ "targetPosition": "right",
336
+ "type": "beginNode",
337
+ "width": 50
338
+ },
339
+ {
340
+ "data": {
341
+ "form": {},
342
+ "label": "Answer",
343
+ "name": "Interface"
344
+ },
345
+ "dragging": false,
346
+ "height": 100,
347
+ "id": "answer:0",
348
+ "position": {
349
+ "x": 638.4631551507972,
350
+ "y": 71.36899317395626
351
+ },
352
+ "positionAbsolute": {
353
+ "x": 638.4631551507972,
354
+ "y": 71.36899317395626
355
+ },
356
+ "selected": false,
357
+ "sourcePosition": "left",
358
+ "targetPosition": "right",
359
+ "type": "logicNode",
360
+ "width": 100
361
+ },
362
+ {
363
+ "data": {
364
+ "form": {
365
+ "category_description": {
366
+ "answer": {
367
+ "description": "This answer provide a specific contact information, like e-mail, phone number, wechat number, line number, twitter, discord, etc,.",
368
+ "examples": "My phone number is 203921\nkevinhu.hk@gmail.com\nThis is my discord number: johndowson_29384",
369
+ "to": "message:get_contact"
370
+ },
371
+ "casual": {
372
+ "description": "The question is not about the product usage, appearance and how it works. Just casual chat.",
373
+ "examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
374
+ "to": "generate:casual"
375
+ },
376
+ "complain": {
377
+ "description": "Complain even curse about the product or service you provide. But the comment is not specific enough.",
378
+ "examples": "How bad is it.\nIt's really sucks.\nDamn, for God's sake, can it be more steady?\nShit, I just can't use this shit.\nI can't stand it anymore.",
379
+ "to": "generate:complain"
380
+ },
381
+ "product_related": {
382
+ "description": "The question is about the product usage, appearance and how it works.",
383
+ "examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?\nException: Can't connect to ES cluster\nHow to build the RAGFlow image from scratch",
384
+ "to": "retrieval:0"
385
+ }
386
+ },
387
+ "llm_id": "deepseek-chat",
388
+ "message_history_window_size": 8
389
+ },
390
+ "label": "Categorize",
391
+ "name": "Question Categorize"
392
+ },
393
+ "dragging": false,
394
+ "height": 100,
395
+ "id": "categorize:0",
396
+ "position": {
397
+ "x": -5.661990007284574,
398
+ "y": 461.0436851280078
399
+ },
400
+ "positionAbsolute": {
401
+ "x": -5.661990007284574,
402
+ "y": 461.0436851280078
403
+ },
404
+ "selected": false,
405
+ "sourcePosition": "left",
406
+ "targetPosition": "right",
407
+ "type": "categorizeNode",
408
+ "width": 100
409
+ },
410
+ {
411
+ "data": {
412
+ "form": {
413
+ "cite": false,
414
+ "llm_id": "deepseek-chat",
415
+ "message_history_window_size": 12,
416
+ "prompt": "You are a customer support. But the customer wants to have a casual chat with you instead of consulting about the product. Be nice, funny, enthusiasm and concern.",
417
+ "temperature": 0.9
418
+ },
419
+ "label": "Generate",
420
+ "name": "Casual chat"
421
+ },
422
+ "dragging": false,
423
+ "height": 150,
424
+ "id": "generate:casual",
425
+ "position": {
426
+ "x": 314.3012082990795,
427
+ "y": -86.46384197439605
428
+ },
429
+ "positionAbsolute": {
430
+ "x": 314.3012082990795,
431
+ "y": -86.46384197439605
432
+ },
433
+ "selected": false,
434
+ "sourcePosition": "left",
435
+ "targetPosition": "right",
436
+ "type": "logicNode",
437
+ "width": 150
438
+ },
439
+ {
440
+ "data": {
441
+ "form": {
442
+ "cite": false,
443
+ "llm_id": "deepseek-chat",
444
+ "message_history_window_size": 12,
445
+ "prompt": "You are a customer support. the Customers complain even curse about the products but not specific enough. You need to ask him/her what's the specific problem with the product. Be nice, patient and concern to soothe your customers’ emotions at first place.",
446
+ "temperature": 0.9
447
+ },
448
+ "label": "Generate",
449
+ "name": "Soothe mood"
450
+ },
451
+ "dragging": false,
452
+ "height": 150,
453
+ "id": "generate:complain",
454
+ "position": {
455
+ "x": 638.3075558015155,
456
+ "y": 397.78425175650347
457
+ },
458
+ "positionAbsolute": {
459
+ "x": 638.3075558015155,
460
+ "y": 397.78425175650347
461
+ },
462
+ "selected": false,
463
+ "sourcePosition": "left",
464
+ "targetPosition": "right",
465
+ "type": "logicNode",
466
+ "width": 150
467
+ },
468
+ {
469
+ "data": {
470
+ "form": {
471
+ "kb_ids": [],
472
+ "keywords_similarity_weight": 0.3,
473
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
474
+ "similarity_threshold": 0.2,
475
+ "top_k": 1024,
476
+ "top_n": 6
477
+ },
478
+ "label": "Retrieval",
479
+ "name": "Search product info"
480
+ },
481
+ "dragging": false,
482
+ "height": 100,
483
+ "id": "retrieval:0",
484
+ "position": {
485
+ "x": 46.056812569554474,
486
+ "y": -107.6498359566391
487
+ },
488
+ "positionAbsolute": {
489
+ "x": 46.056812569554474,
490
+ "y": -107.6498359566391
491
+ },
492
+ "selected": false,
493
+ "sourcePosition": "left",
494
+ "targetPosition": "right",
495
+ "type": "logicNode",
496
+ "width": 100
497
+ },
498
+ {
499
+ "data": {
500
+ "form": {
501
+ "llm_id": "deepseek-chat",
502
+ "no": "generate:ask_contact",
503
+ "temperature": 0.02,
504
+ "yes": "generate:answer"
505
+ },
506
+ "label": "Relevant",
507
+ "name": "Relevant?"
508
+ },
509
+ "dragging": false,
510
+ "height": 70,
511
+ "id": "relevant:0",
512
+ "position": {
513
+ "x": 46.93961268163955,
514
+ "y": -332.00374591025786
515
+ },
516
+ "positionAbsolute": {
517
+ "x": 46.93961268163955,
518
+ "y": -332.00374591025786
519
+ },
520
+ "selected": false,
521
+ "sourcePosition": "left",
522
+ "targetPosition": "right",
523
+ "type": "relevantNode",
524
+ "width": 70
525
+ },
526
+ {
527
+ "data": {
528
+ "form": {
529
+ "llm_id": "deepseek-chat",
530
+ "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
531
+ "temperature": 0.02
532
+ },
533
+ "label": "Generate",
534
+ "name": "Product info"
535
+ },
536
+ "dragging": false,
537
+ "height": 150,
538
+ "id": "generate:answer",
539
+ "position": {
540
+ "x": 413.5337945397181,
541
+ "y": -255.54195657210374
542
+ },
543
+ "positionAbsolute": {
544
+ "x": 413.5337945397181,
545
+ "y": -255.54195657210374
546
+ },
547
+ "selected": false,
548
+ "sourcePosition": "left",
549
+ "targetPosition": "right",
550
+ "type": "logicNode",
551
+ "width": 150
552
+ },
553
+ {
554
+ "data": {
555
+ "form": {
556
+ "cite": false,
557
+ "llm_id": "deepseek-chat",
558
+ "message_history_window_size": 12,
559
+ "prompt": "You are a customer support. But you can't answer to customers' question. You need to request their contact like E-mail, phone number, Wechat number, LINE number, twitter, discord, etc,. Product experts will contact them later. Please do not ask the same question twice.",
560
+ "temperature": 0.9
561
+ },
562
+ "label": "Generate",
563
+ "name": "Request contact"
564
+ },
565
+ "dragging": false,
566
+ "height": 150,
567
+ "id": "generate:ask_contact",
568
+ "position": {
569
+ "x": 636.1639603425758,
570
+ "y": -391.62634222619454
571
+ },
572
+ "positionAbsolute": {
573
+ "x": 636.1639603425758,
574
+ "y": -391.62634222619454
575
+ },
576
+ "selected": true,
577
+ "sourcePosition": "left",
578
+ "targetPosition": "right",
579
+ "type": "logicNode",
580
+ "width": 150
581
+ },
582
+ {
583
+ "data": {
584
+ "form": {
585
+ "messages": [
586
+ "Okay, I've already write this down. What else I can do for you?",
587
+ "Get it. What else I can do for you?",
588
+ "Thanks for your trust! Our expert will contact ASAP. So, anything else I can do for you?",
589
+ "Thanks! So, anything else I can do for you?"
590
+ ]
591
+ },
592
+ "label": "Message",
593
+ "name": "What else?"
594
+ },
595
+ "dragging": false,
596
+ "height": 100,
597
+ "id": "message:get_contact",
598
+ "position": {
599
+ "x": 261.48313054267913,
600
+ "y": 119.6490357959155
601
+ },
602
+ "positionAbsolute": {
603
+ "x": 261.48313054267913,
604
+ "y": 119.6490357959155
605
+ },
606
+ "selected": false,
607
+ "sourcePosition": "left",
608
+ "targetPosition": "right",
609
+ "type": "logicNode",
610
+ "width": 100
611
+ }
612
+ ]
613
+ },
614
+ "history": [],
615
+ "messages": [],
616
+ "path": [],
617
+ "reference": []
618
+ },
619
+ "avatar": ""
620
+ }
agent/templates/general_chat_bot.json ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "id": 1,
3
+ "title": "Chat bot",
4
+ "description": "A general chat bot. It is based on Self-RAG mechanism. What you need to do is setting up knowleage base in 'Retrieval'",
5
+ "canvas_type": "chatbot",
6
+ "dsl": {
7
+ "answer": [],
8
+ "components": {
9
+ "answer:0": {
10
+ "downstream": ["retrieval:0"],
11
+ "obj": {
12
+ "component_name": "Answer",
13
+ "params": {}
14
+ },
15
+ "upstream": ["begin", "generate:0"]
16
+ },
17
+ "begin": {
18
+ "downstream": ["answer:0"],
19
+ "obj": {
20
+ "component_name": "Begin",
21
+ "params": {
22
+ "prologue": "Hi there!"
23
+ }
24
+ },
25
+ "upstream": []
26
+ },
27
+ "generate:0": {
28
+ "downstream": ["answer:0"],
29
+ "obj": {
30
+ "component_name": "Generate",
31
+ "params": {
32
+ "llm_id": "deepseek-chat",
33
+ "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base."
34
+ }
35
+ },
36
+ "upstream": ["relevant:0"]
37
+ },
38
+ "relevant:0": {
39
+ "downstream": ["rewrite:0", "generate:0"],
40
+ "obj": {
41
+ "component_name": "Relevant",
42
+ "params": {
43
+ "llm_id": "deepseek-chat",
44
+ "no": "rewrite:0",
45
+ "temperature": 0.02,
46
+ "yes": "generate:0"
47
+ }
48
+ },
49
+ "upstream": ["retrieval:0"]
50
+ },
51
+ "retrieval:0": {
52
+ "downstream": ["relevant:0"],
53
+ "obj": {
54
+ "component_name": "Retrieval",
55
+ "params": {
56
+ "empty_response": "Sorry, knowledge base has noting related information.",
57
+ "kb_ids": [],
58
+ "keywords_similarity_weight": 0.3,
59
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
60
+ "similarity_threshold": 0.2,
61
+ "top_k": 1024,
62
+ "top_n": 6
63
+ }
64
+ },
65
+ "upstream": ["answer:0", "rewrite:0"]
66
+ },
67
+ "rewrite:0": {
68
+ "downstream": ["retrieval:0"],
69
+ "obj": {
70
+ "component_name": "RewriteQuestion",
71
+ "params": {
72
+ "llm_id": "deepseek-chat",
73
+ "temperature": 0.8
74
+ }
75
+ },
76
+ "upstream": ["relevant:0"]
77
+ }
78
+ },
79
+ "graph": {
80
+ "edges": [
81
+ {
82
+ "id": "81de838d-a541-4b3f-9d68-9172ffd7c6b4",
83
+ "label": "",
84
+ "source": "begin",
85
+ "target": "answer:0"
86
+ },
87
+ {
88
+ "id": "reactflow__edge-answer:0b-retrieval:0c",
89
+ "markerEnd": "logo",
90
+ "source": "answer:0",
91
+ "sourceHandle": "b",
92
+ "style": {
93
+ "stroke": "rgb(202 197 245)",
94
+ "strokeWidth": 2
95
+ },
96
+ "target": "retrieval:0",
97
+ "targetHandle": "c",
98
+ "type": "buttonEdge"
99
+ },
100
+ {
101
+ "id": "reactflow__edge-generate:0d-answer:0a",
102
+ "markerEnd": "logo",
103
+ "source": "generate:0",
104
+ "sourceHandle": "d",
105
+ "style": {
106
+ "stroke": "rgb(202 197 245)",
107
+ "strokeWidth": 2
108
+ },
109
+ "target": "answer:0",
110
+ "targetHandle": "a",
111
+ "type": "buttonEdge"
112
+ },
113
+ {
114
+ "id": "reactflow__edge-retrieval:0a-relevant:0b",
115
+ "markerEnd": "logo",
116
+ "source": "retrieval:0",
117
+ "sourceHandle": "a",
118
+ "style": {
119
+ "stroke": "rgb(202 197 245)",
120
+ "strokeWidth": 2
121
+ },
122
+ "target": "relevant:0",
123
+ "targetHandle": "b",
124
+ "type": "buttonEdge"
125
+ },
126
+ {
127
+ "id": "reactflow__edge-rewrite:0d-retrieval:0b",
128
+ "markerEnd": "logo",
129
+ "source": "rewrite:0",
130
+ "sourceHandle": "d",
131
+ "style": {
132
+ "stroke": "rgb(202 197 245)",
133
+ "strokeWidth": 2
134
+ },
135
+ "target": "retrieval:0",
136
+ "targetHandle": "b",
137
+ "type": "buttonEdge"
138
+ },
139
+ {
140
+ "id": "reactflow__edge-relevant:0no-rewrite:0a",
141
+ "markerEnd": "logo",
142
+ "source": "relevant:0",
143
+ "sourceHandle": "no",
144
+ "style": {
145
+ "stroke": "rgb(202 197 245)",
146
+ "strokeWidth": 2
147
+ },
148
+ "target": "rewrite:0",
149
+ "targetHandle": "a",
150
+ "type": "buttonEdge"
151
+ },
152
+ {
153
+ "id": "reactflow__edge-relevant:0yes-generate:0b",
154
+ "markerEnd": "logo",
155
+ "source": "relevant:0",
156
+ "sourceHandle": "yes",
157
+ "style": {
158
+ "stroke": "rgb(202 197 245)",
159
+ "strokeWidth": 2
160
+ },
161
+ "target": "generate:0",
162
+ "targetHandle": "b",
163
+ "type": "buttonEdge"
164
+ }
165
+ ],
166
+ "nodes": [
167
+ {
168
+ "data": {
169
+ "form": {
170
+ "prologue": "Hi there!"
171
+ },
172
+ "label": "Begin",
173
+ "name": "Opening"
174
+ },
175
+ "dragging": false,
176
+ "height": 50,
177
+ "id": "begin",
178
+ "position": {
179
+ "x": -304.50000000000006,
180
+ "y": -2.9994670375766646
181
+ },
182
+ "positionAbsolute": {
183
+ "x": -304.50000000000006,
184
+ "y": -2.9994670375766646
185
+ },
186
+ "selected": false,
187
+ "sourcePosition": "left",
188
+ "targetPosition": "right",
189
+ "type": "beginNode",
190
+ "width": 50
191
+ },
192
+ {
193
+ "data": {
194
+ "form": {},
195
+ "label": "Answer",
196
+ "name": "Interface"
197
+ },
198
+ "dragging": false,
199
+ "height": 100,
200
+ "id": "answer:0",
201
+ "position": {
202
+ "x": -89.78929141627594,
203
+ "y": -29.530900170597448
204
+ },
205
+ "positionAbsolute": {
206
+ "x": -89.78929141627594,
207
+ "y": -29.530900170597448
208
+ },
209
+ "selected": false,
210
+ "sourcePosition": "left",
211
+ "targetPosition": "right",
212
+ "type": "logicNode",
213
+ "width": 100
214
+ },
215
+ {
216
+ "data": {
217
+ "form": {
218
+ "empty_response": "Sorry, knowledge base has noting related information.",
219
+ "kb_ids": [],
220
+ "keywords_similarity_weight": 0.3,
221
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
222
+ "similarity_threshold": 0.2,
223
+ "top_k": 1024,
224
+ "top_n": 6
225
+ },
226
+ "label": "Retrieval",
227
+ "name": "Search KB"
228
+ },
229
+ "dragging": false,
230
+ "height": 100,
231
+ "id": "retrieval:0",
232
+ "position": {
233
+ "x": 225.1100159655728,
234
+ "y": -28.569259485130402
235
+ },
236
+ "positionAbsolute": {
237
+ "x": 225.1100159655728,
238
+ "y": -28.569259485130402
239
+ },
240
+ "selected": true,
241
+ "sourcePosition": "left",
242
+ "targetPosition": "right",
243
+ "type": "logicNode",
244
+ "width": 100
245
+ },
246
+ {
247
+ "data": {
248
+ "form": {
249
+ "llm_id": "deepseek-chat",
250
+ "no": "rewrite:0",
251
+ "temperature": 0.02,
252
+ "yes": "generate:0"
253
+ },
254
+ "label": "Relevant",
255
+ "name": "Relevant?"
256
+ },
257
+ "dragging": false,
258
+ "height": 70,
259
+ "id": "relevant:0",
260
+ "position": {
261
+ "x": 225.36494412049518,
262
+ "y": 307.7194989687223
263
+ },
264
+ "positionAbsolute": {
265
+ "x": 225.36494412049518,
266
+ "y": 307.7194989687223
267
+ },
268
+ "selected": false,
269
+ "sourcePosition": "left",
270
+ "targetPosition": "right",
271
+ "type": "relevantNode",
272
+ "width": 70
273
+ },
274
+ {
275
+ "data": {
276
+ "form": {
277
+ "llm_id": "deepseek-chat",
278
+ "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
279
+ "temperature": 0.02
280
+ },
281
+ "label": "Generate",
282
+ "name": "LLM"
283
+ },
284
+ "dragging": false,
285
+ "height": 150,
286
+ "id": "generate:0",
287
+ "position": {
288
+ "x": -90.09669656497177,
289
+ "y": 192.12280240375043
290
+ },
291
+ "positionAbsolute": {
292
+ "x": -90.09669656497177,
293
+ "y": 192.12280240375043
294
+ },
295
+ "selected": false,
296
+ "sourcePosition": "left",
297
+ "targetPosition": "right",
298
+ "type": "logicNode",
299
+ "width": 150
300
+ },
301
+ {
302
+ "data": {
303
+ "form": {
304
+ "llm_id": "deepseek-chat",
305
+ "temperature": 0.8
306
+ },
307
+ "label": "RewriteQuestion",
308
+ "name": "Refine Ques"
309
+ },
310
+ "dragging": false,
311
+ "height": 70,
312
+ "id": "rewrite:0",
313
+ "position": {
314
+ "x": 416.0628662660416,
315
+ "y": 144.09722952739514
316
+ },
317
+ "positionAbsolute": {
318
+ "x": 416.0628662660416,
319
+ "y": 144.09722952739514
320
+ },
321
+ "selected": false,
322
+ "sourcePosition": "left",
323
+ "targetPosition": "right",
324
+ "type": "logicNode",
325
+ "width": 70
326
+ }
327
+ ]
328
+ },
329
+ "history": [],
330
+ "messages": [],
331
+ "path": [],
332
+ "reference": []
333
+ },
334
+ "avatar": ""
335
+ }
agent/templates/interpreter.json ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "id": 4,
3
+ "title": "Interpreter",
4
+ "description": "An interpreter. Type the content you want to translate and the object language like: Hi there => Spanish. Hava a try!",
5
+ "canvas_type": "chatbot",
6
+ "dsl": {
7
+ "answer": [],
8
+ "components": {
9
+ "answer:0": {
10
+ "downstream": ["generate:0"],
11
+ "obj": {
12
+ "component_name": "Answer",
13
+ "params": {}
14
+ },
15
+ "upstream": ["begin", "generate:0"]
16
+ },
17
+ "begin": {
18
+ "downstream": ["answer:0"],
19
+ "obj": {
20
+ "component_name": "Begin",
21
+ "params": {
22
+ "prologue": "Hi there! Please enter the text you want to translate in format like: 'text you want to translate' => target language. For an example: 您好! => English"
23
+ }
24
+ },
25
+ "upstream": []
26
+ },
27
+ "generate:0": {
28
+ "downstream": ["answer:0"],
29
+ "obj": {
30
+ "component_name": "Generate",
31
+ "params": {
32
+ "llm_id": "deepseek-chat",
33
+ "prompt": "You are an professional interpreter.\n- Role: an professional interpreter.\n- Input format: content need to be translated => target language. \n- Answer format: => translated content in target language. \n- Examples:\n - user: 您好! => English. assistant: => How are you doing!\n - user: You look good today. => Japanese. assistant: => 今日は調子がいいですね 。\n"
34
+ }
35
+ },
36
+ "upstream": ["answer:0"]
37
+ }
38
+ },
39
+ "graph": {
40
+ "edges": [
41
+ {
42
+ "id": "c87c7805-8cf0-4cd4-b45b-152031811020",
43
+ "label": "",
44
+ "source": "begin",
45
+ "target": "answer:0"
46
+ },
47
+ {
48
+ "id": "reactflow__edge-answer:0b-generate:0d",
49
+ "markerEnd": "logo",
50
+ "source": "answer:0",
51
+ "sourceHandle": "b",
52
+ "style": {
53
+ "stroke": "rgb(202 197 245)",
54
+ "strokeWidth": 2
55
+ },
56
+ "target": "generate:0",
57
+ "targetHandle": "d",
58
+ "type": "buttonEdge"
59
+ },
60
+ {
61
+ "id": "reactflow__edge-generate:0c-answer:0a",
62
+ "markerEnd": "logo",
63
+ "source": "generate:0",
64
+ "sourceHandle": "c",
65
+ "style": {
66
+ "stroke": "rgb(202 197 245)",
67
+ "strokeWidth": 2
68
+ },
69
+ "target": "answer:0",
70
+ "targetHandle": "a",
71
+ "type": "buttonEdge"
72
+ }
73
+ ],
74
+ "nodes": [
75
+ {
76
+ "data": {
77
+ "form": {
78
+ "prologue": "Hi there! Please enter the text you want to translate in format like: 'text you want to translate' => target language. For an example: 您好! => English"
79
+ },
80
+ "label": "Begin",
81
+ "name": "Instruction"
82
+ },
83
+ "dragging": false,
84
+ "height": 50,
85
+ "id": "begin",
86
+ "position": {
87
+ "x": -175.31950791077287,
88
+ "y": 32.340246044613565
89
+ },
90
+ "positionAbsolute": {
91
+ "x": -175.31950791077287,
92
+ "y": 32.340246044613565
93
+ },
94
+ "selected": true,
95
+ "sourcePosition": "left",
96
+ "targetPosition": "right",
97
+ "type": "beginNode",
98
+ "width": 50
99
+ },
100
+ {
101
+ "data": {
102
+ "form": {},
103
+ "label": "Answer",
104
+ "name": "Interface"
105
+ },
106
+ "dragging": false,
107
+ "height": 100,
108
+ "id": "answer:0",
109
+ "position": {
110
+ "x": 0,
111
+ "y": 6
112
+ },
113
+ "positionAbsolute": {
114
+ "x": 0,
115
+ "y": 6
116
+ },
117
+ "selected": false,
118
+ "sourcePosition": "left",
119
+ "targetPosition": "right",
120
+ "type": "logicNode",
121
+ "width": 100
122
+ },
123
+ {
124
+ "data": {
125
+ "form": {
126
+ "llm_id": "deepseek-chat",
127
+ "prompt": "You are an professional interpreter.\n- Role: an professional interpreter.\n- Input format: content need to be translated => target language. \n- Answer format: => translated content in target language. \n- Examples:\n - user: 您好! => English. assistant: => How are you doing!\n - user: You look good today. => Japanese. assistant: => 今日は調子がいいですね 。\n",
128
+ "temperature": 0.5
129
+ },
130
+ "label": "Generate",
131
+ "name": "Translate"
132
+ },
133
+ "dragging": false,
134
+ "height": 150,
135
+ "id": "generate:0",
136
+ "position": {
137
+ "x": 214.89015821545786,
138
+ "y": 135.10439391733706
139
+ },
140
+ "positionAbsolute": {
141
+ "x": 214.89015821545786,
142
+ "y": 135.10439391733706
143
+ },
144
+ "selected": false,
145
+ "sourcePosition": "left",
146
+ "targetPosition": "right",
147
+ "type": "logicNode",
148
+ "width": 150
149
+ }
150
+ ]
151
+ },
152
+ "history": [],
153
+ "messages": [],
154
+ "path": [],
155
+ "reference": []
156
+ },
157
+ "avatar": ""
158
+ }
agent/templates/websearch_assistant.json ADDED
@@ -0,0 +1,547 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "id": 0,
3
+ "title": "WebSearch Assistant",
4
+ "description": "A chat assistant that combines information both from knowledge base and web search engines. It integrates information from the knowledge base and relevant search engines to answer a given question. What you need to do is setting up knowleage base in 'Retrieval'.",
5
+ "canvas_type": "chatbot",
6
+ "dsl": {
7
+ "answer": [],
8
+ "components": {
9
+ "Answer:PoorMapsCover": {
10
+ "downstream": [
11
+ "Retrieval:BetterRocksJump",
12
+ "KeywordExtract:LegalIdeasTurn"
13
+ ],
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "upstream": ["Generate:FullYearsStick", "begin"]
19
+ },
20
+ "Baidu:OliveAreasCall": {
21
+ "downstream": ["Generate:FullYearsStick"],
22
+ "obj": {
23
+ "component_name": "Baidu",
24
+ "params": {
25
+ "top_n": 2
26
+ }
27
+ },
28
+ "upstream": ["KeywordExtract:LegalIdeasTurn"]
29
+ },
30
+ "DuckDuckGo:SoftButtonsRefuse": {
31
+ "downstream": ["Generate:FullYearsStick"],
32
+ "obj": {
33
+ "component_name": "DuckDuckGo",
34
+ "params": {
35
+ "channel": "text",
36
+ "top_n": 2
37
+ }
38
+ },
39
+ "upstream": ["KeywordExtract:LegalIdeasTurn"]
40
+ },
41
+ "Generate:FullYearsStick": {
42
+ "downstream": ["Answer:PoorMapsCover"],
43
+ "obj": {
44
+ "component_name": "Generate",
45
+ "params": {
46
+ "cite": true,
47
+ "frequency_penalty": 0.7,
48
+ "llm_id": "deepseek-chat",
49
+ "message_history_window_size": 12,
50
+ "parameters": [
51
+ {
52
+ "component_id": "Retrieval:BetterRocksJump",
53
+ "id": "69415446-49bf-4d4b-8ec9-ac86066f7709",
54
+ "key": "kb_input"
55
+ },
56
+ {
57
+ "component_id": "DuckDuckGo:SoftButtonsRefuse",
58
+ "id": "83363c2a-00a8-402f-a45c-ddc4097d7d8b",
59
+ "key": "duckduckgo"
60
+ },
61
+ {
62
+ "component_id": "Wikipedia:WittyRiceLearn",
63
+ "id": "92c1e8e4-1597-4e65-a08d-c8cac4ac150f",
64
+ "key": "wikipedia"
65
+ },
66
+ {
67
+ "component_id": "Baidu:OliveAreasCall",
68
+ "id": "19b5445a-7a6e-4a26-9aa9-47dfe3a03bea",
69
+ "key": "baidu"
70
+ }
71
+ ],
72
+ "presence_penalty": 0.4,
73
+ "prompt": "Role: You are an intelligent assistant. \nTask: Chat with user. Answer the question based on the provided content from: Knowledge Base, Wikipedia, Duckduckgo, Baidu.\nRequirements:\n - Answer should be in markdown format.\n - Summarize and label the sources of the cited content separately: (Knowledge Base, Wikipedia, Duckduckgo, Baidu).\n - Attach URL links to the content which is quoted from Wikipedia, DuckDuckGo or Baidu.\n - Do not make thing up when there's no relevant information to user's question. \n\n## Knowledge base content\n {kb_input}\n\n\n## Wikipedia content\n{wikipedia}\n\n\n## Duckduckgo content\n{duckduckgo}\n\n\n## Baidu content\n{baidu}",
74
+ "temperature": 0.1,
75
+ "top_p": 0.3
76
+ }
77
+ },
78
+ "upstream": [
79
+ "DuckDuckGo:SoftButtonsRefuse",
80
+ "Baidu:OliveAreasCall",
81
+ "Wikipedia:WittyRiceLearn",
82
+ "Retrieval:BetterRocksJump"
83
+ ]
84
+ },
85
+ "KeywordExtract:LegalIdeasTurn": {
86
+ "downstream": [
87
+ "Baidu:OliveAreasCall",
88
+ "DuckDuckGo:SoftButtonsRefuse",
89
+ "Wikipedia:WittyRiceLearn"
90
+ ],
91
+ "obj": {
92
+ "component_name": "KeywordExtract",
93
+ "params": {
94
+ "frequencyPenaltyEnabled": true,
95
+ "frequency_penalty": 0.7,
96
+ "llm_id": "deepseek-chat",
97
+ "maxTokensEnabled": true,
98
+ "max_tokens": 256,
99
+ "parameter": "Precise",
100
+ "presencePenaltyEnabled": true,
101
+ "presence_penalty": 0.4,
102
+ "temperature": 0.1,
103
+ "temperatureEnabled": true,
104
+ "topPEnabled": true,
105
+ "top_n": 2,
106
+ "top_p": 0.3
107
+ }
108
+ },
109
+ "upstream": ["Answer:PoorMapsCover"]
110
+ },
111
+ "Retrieval:BetterRocksJump": {
112
+ "downstream": ["Generate:FullYearsStick"],
113
+ "obj": {
114
+ "component_name": "Retrieval",
115
+ "params": {
116
+ "empty_response": "The answer you want was not found in the knowledge base!",
117
+ "kb_ids": [],
118
+ "keywords_similarity_weight": 0.3,
119
+ "similarity_threshold": 0.2,
120
+ "top_n": 8
121
+ }
122
+ },
123
+ "upstream": ["Answer:PoorMapsCover"]
124
+ },
125
+ "Wikipedia:WittyRiceLearn": {
126
+ "downstream": ["Generate:FullYearsStick"],
127
+ "obj": {
128
+ "component_name": "Wikipedia",
129
+ "params": {
130
+ "language": "en",
131
+ "top_n": 2
132
+ }
133
+ },
134
+ "upstream": ["KeywordExtract:LegalIdeasTurn"]
135
+ },
136
+ "begin": {
137
+ "downstream": ["Answer:PoorMapsCover"],
138
+ "obj": {
139
+ "component_name": "Begin",
140
+ "params": {}
141
+ },
142
+ "upstream": []
143
+ }
144
+ },
145
+ "graph": {
146
+ "edges": [
147
+ {
148
+ "id": "reactflow__edge-Answer:PoorMapsCovera-Retrieval:BetterRocksJumpc",
149
+ "markerEnd": "logo",
150
+ "source": "Answer:PoorMapsCover",
151
+ "sourceHandle": "a",
152
+ "style": {
153
+ "stroke": "rgb(202 197 245)",
154
+ "strokeWidth": 2
155
+ },
156
+ "target": "Retrieval:BetterRocksJump",
157
+ "targetHandle": "c",
158
+ "type": "buttonEdge"
159
+ },
160
+ {
161
+ "id": "reactflow__edge-Answer:PoorMapsCoverb-KeywordExtract:LegalIdeasTurnc",
162
+ "markerEnd": "logo",
163
+ "source": "Answer:PoorMapsCover",
164
+ "sourceHandle": "b",
165
+ "style": {
166
+ "stroke": "rgb(202 197 245)",
167
+ "strokeWidth": 2
168
+ },
169
+ "target": "KeywordExtract:LegalIdeasTurn",
170
+ "targetHandle": "c",
171
+ "type": "buttonEdge"
172
+ },
173
+ {
174
+ "id": "reactflow__edge-KeywordExtract:LegalIdeasTurnb-Baidu:OliveAreasCallc",
175
+ "markerEnd": "logo",
176
+ "source": "KeywordExtract:LegalIdeasTurn",
177
+ "sourceHandle": "b",
178
+ "style": {
179
+ "stroke": "rgb(202 197 245)",
180
+ "strokeWidth": 2
181
+ },
182
+ "target": "Baidu:OliveAreasCall",
183
+ "targetHandle": "c",
184
+ "type": "buttonEdge"
185
+ },
186
+ {
187
+ "id": "reactflow__edge-KeywordExtract:LegalIdeasTurnb-DuckDuckGo:SoftButtonsRefusec",
188
+ "markerEnd": "logo",
189
+ "source": "KeywordExtract:LegalIdeasTurn",
190
+ "sourceHandle": "b",
191
+ "style": {
192
+ "stroke": "rgb(202 197 245)",
193
+ "strokeWidth": 2
194
+ },
195
+ "target": "DuckDuckGo:SoftButtonsRefuse",
196
+ "targetHandle": "c",
197
+ "type": "buttonEdge"
198
+ },
199
+ {
200
+ "id": "reactflow__edge-KeywordExtract:LegalIdeasTurnb-Wikipedia:WittyRiceLearnc",
201
+ "markerEnd": "logo",
202
+ "source": "KeywordExtract:LegalIdeasTurn",
203
+ "sourceHandle": "b",
204
+ "style": {
205
+ "stroke": "rgb(202 197 245)",
206
+ "strokeWidth": 2
207
+ },
208
+ "target": "Wikipedia:WittyRiceLearn",
209
+ "targetHandle": "c",
210
+ "type": "buttonEdge"
211
+ },
212
+ {
213
+ "id": "reactflow__edge-DuckDuckGo:SoftButtonsRefuseb-Generate:FullYearsSticka",
214
+ "markerEnd": "logo",
215
+ "source": "DuckDuckGo:SoftButtonsRefuse",
216
+ "sourceHandle": "b",
217
+ "style": {
218
+ "stroke": "rgb(202 197 245)",
219
+ "strokeWidth": 2
220
+ },
221
+ "target": "Generate:FullYearsStick",
222
+ "targetHandle": "a",
223
+ "type": "buttonEdge"
224
+ },
225
+ {
226
+ "id": "reactflow__edge-Baidu:OliveAreasCallb-Generate:FullYearsSticka",
227
+ "markerEnd": "logo",
228
+ "source": "Baidu:OliveAreasCall",
229
+ "sourceHandle": "b",
230
+ "style": {
231
+ "stroke": "rgb(202 197 245)",
232
+ "strokeWidth": 2
233
+ },
234
+ "target": "Generate:FullYearsStick",
235
+ "targetHandle": "a",
236
+ "type": "buttonEdge"
237
+ },
238
+ {
239
+ "id": "reactflow__edge-Wikipedia:WittyRiceLearnb-Generate:FullYearsSticka",
240
+ "markerEnd": "logo",
241
+ "source": "Wikipedia:WittyRiceLearn",
242
+ "sourceHandle": "b",
243
+ "style": {
244
+ "stroke": "rgb(202 197 245)",
245
+ "strokeWidth": 2
246
+ },
247
+ "target": "Generate:FullYearsStick",
248
+ "targetHandle": "a",
249
+ "type": "buttonEdge"
250
+ },
251
+ {
252
+ "id": "reactflow__edge-Retrieval:BetterRocksJumpb-Generate:FullYearsSticka",
253
+ "markerEnd": "logo",
254
+ "source": "Retrieval:BetterRocksJump",
255
+ "sourceHandle": "b",
256
+ "style": {
257
+ "stroke": "rgb(202 197 245)",
258
+ "strokeWidth": 2
259
+ },
260
+ "target": "Generate:FullYearsStick",
261
+ "targetHandle": "a",
262
+ "type": "buttonEdge"
263
+ },
264
+ {
265
+ "id": "reactflow__edge-Generate:FullYearsStickd-Answer:PoorMapsCoverd",
266
+ "markerEnd": "logo",
267
+ "source": "Generate:FullYearsStick",
268
+ "sourceHandle": "d",
269
+ "style": {
270
+ "stroke": "rgb(202 197 245)",
271
+ "strokeWidth": 2
272
+ },
273
+ "target": "Answer:PoorMapsCover",
274
+ "targetHandle": "d",
275
+ "type": "buttonEdge"
276
+ },
277
+ {
278
+ "id": "reactflow__edge-begin-Answer:PoorMapsCoverc",
279
+ "markerEnd": "logo",
280
+ "source": "begin",
281
+ "sourceHandle": null,
282
+ "style": {
283
+ "stroke": "rgb(202 197 245)",
284
+ "strokeWidth": 2
285
+ },
286
+ "target": "Answer:PoorMapsCover",
287
+ "targetHandle": "c",
288
+ "type": "buttonEdge"
289
+ }
290
+ ],
291
+ "nodes": [
292
+ {
293
+ "data": {
294
+ "label": "Begin",
295
+ "name": "opening"
296
+ },
297
+ "dragging": false,
298
+ "height": 50,
299
+ "id": "begin",
300
+ "position": {
301
+ "x": -1020.0423250754997,
302
+ "y": 54.07040832453751
303
+ },
304
+ "positionAbsolute": {
305
+ "x": -1020.0423250754997,
306
+ "y": 54.07040832453751
307
+ },
308
+ "selected": false,
309
+ "sourcePosition": "left",
310
+ "targetPosition": "right",
311
+ "type": "beginNode",
312
+ "width": 50
313
+ },
314
+ {
315
+ "data": {
316
+ "form": {},
317
+ "label": "Answer",
318
+ "name": "interface"
319
+ },
320
+ "dragging": false,
321
+ "height": 100,
322
+ "id": "Answer:PoorMapsCover",
323
+ "position": {
324
+ "x": -880.5773333116513,
325
+ "y": 29.2721628695582
326
+ },
327
+ "positionAbsolute": {
328
+ "x": -880.5773333116513,
329
+ "y": 29.2721628695582
330
+ },
331
+ "selected": false,
332
+ "sourcePosition": "right",
333
+ "targetPosition": "left",
334
+ "type": "logicNode",
335
+ "width": 100
336
+ },
337
+ {
338
+ "data": {
339
+ "form": {
340
+ "frequencyPenaltyEnabled": true,
341
+ "frequency_penalty": 0.7,
342
+ "llm_id": "deepseek-chat",
343
+ "maxTokensEnabled": true,
344
+ "max_tokens": 256,
345
+ "parameter": "Precise",
346
+ "presencePenaltyEnabled": true,
347
+ "presence_penalty": 0.4,
348
+ "temperature": 0.1,
349
+ "temperatureEnabled": true,
350
+ "topPEnabled": true,
351
+ "top_n": 2,
352
+ "top_p": 0.3
353
+ },
354
+ "label": "KeywordExtract",
355
+ "name": "get keywords"
356
+ },
357
+ "dragging": false,
358
+ "height": 70,
359
+ "id": "KeywordExtract:LegalIdeasTurn",
360
+ "position": {
361
+ "x": -727.0680233991866,
362
+ "y": 43.6827878582167
363
+ },
364
+ "positionAbsolute": {
365
+ "x": -727.0680233991866,
366
+ "y": 43.6827878582167
367
+ },
368
+ "selected": false,
369
+ "sourcePosition": "right",
370
+ "targetPosition": "left",
371
+ "type": "logicNode",
372
+ "width": 70
373
+ },
374
+ {
375
+ "data": {
376
+ "form": {
377
+ "empty_response": "The answer you want was not found in the knowledge base!",
378
+ "kb_ids": [],
379
+ "keywords_similarity_weight": 0.3,
380
+ "similarity_threshold": 0.2,
381
+ "top_n": 8
382
+ },
383
+ "label": "Retrieval",
384
+ "name": "Search KB"
385
+ },
386
+ "dragging": false,
387
+ "height": 100,
388
+ "id": "Retrieval:BetterRocksJump",
389
+ "position": {
390
+ "x": -453.6381242126441,
391
+ "y": 245.01328822547293
392
+ },
393
+ "positionAbsolute": {
394
+ "x": -453.6381242126441,
395
+ "y": 245.01328822547293
396
+ },
397
+ "selected": false,
398
+ "sourcePosition": "right",
399
+ "targetPosition": "left",
400
+ "type": "logicNode",
401
+ "width": 100
402
+ },
403
+ {
404
+ "data": {
405
+ "form": {
406
+ "language": "en",
407
+ "top_n": 2
408
+ },
409
+ "label": "Wikipedia",
410
+ "name": "Wikipedia"
411
+ },
412
+ "dragging": false,
413
+ "height": 100,
414
+ "id": "Wikipedia:WittyRiceLearn",
415
+ "position": {
416
+ "x": -552.2594439551717,
417
+ "y": 155.22722562174718
418
+ },
419
+ "positionAbsolute": {
420
+ "x": -552.2594439551717,
421
+ "y": 155.22722562174718
422
+ },
423
+ "selected": false,
424
+ "sourcePosition": "right",
425
+ "targetPosition": "left",
426
+ "type": "ragNode",
427
+ "width": 100
428
+ },
429
+ {
430
+ "data": {
431
+ "form": {
432
+ "top_n": 2
433
+ },
434
+ "label": "Baidu",
435
+ "name": "Baidu"
436
+ },
437
+ "dragging": false,
438
+ "height": 100,
439
+ "id": "Baidu:OliveAreasCall",
440
+ "position": {
441
+ "x": -555.1646448972449,
442
+ "y": 22.458226784453046
443
+ },
444
+ "positionAbsolute": {
445
+ "x": -555.1646448972449,
446
+ "y": 22.458226784453046
447
+ },
448
+ "selected": false,
449
+ "sourcePosition": "right",
450
+ "targetPosition": "left",
451
+ "type": "ragNode",
452
+ "width": 100
453
+ },
454
+ {
455
+ "data": {
456
+ "form": {
457
+ "channel": "text",
458
+ "top_n": 2
459
+ },
460
+ "label": "DuckDuckGo",
461
+ "name": "DuckDuckGo"
462
+ },
463
+ "dragging": false,
464
+ "height": 100,
465
+ "id": "DuckDuckGo:SoftButtonsRefuse",
466
+ "position": {
467
+ "x": -554.7669080287701,
468
+ "y": -111.86266788597959
469
+ },
470
+ "positionAbsolute": {
471
+ "x": -554.7669080287701,
472
+ "y": -111.86266788597959
473
+ },
474
+ "selected": false,
475
+ "sourcePosition": "right",
476
+ "targetPosition": "left",
477
+ "type": "ragNode",
478
+ "width": 100
479
+ },
480
+ {
481
+ "data": {
482
+ "form": {
483
+ "cite": true,
484
+ "frequencyPenaltyEnabled": true,
485
+ "frequency_penalty": 0.7,
486
+ "llm_id": "deepseek-chat",
487
+ "message_history_window_size": 12,
488
+ "parameter": "Precise",
489
+ "parameters": [
490
+ {
491
+ "component_id": "Retrieval:BetterRocksJump",
492
+ "id": "69415446-49bf-4d4b-8ec9-ac86066f7709",
493
+ "key": "kb_input"
494
+ },
495
+ {
496
+ "component_id": "DuckDuckGo:SoftButtonsRefuse",
497
+ "id": "83363c2a-00a8-402f-a45c-ddc4097d7d8b",
498
+ "key": "duckduckgo"
499
+ },
500
+ {
501
+ "component_id": "Wikipedia:WittyRiceLearn",
502
+ "id": "92c1e8e4-1597-4e65-a08d-c8cac4ac150f",
503
+ "key": "wikipedia"
504
+ },
505
+ {
506
+ "component_id": "Baidu:OliveAreasCall",
507
+ "id": "19b5445a-7a6e-4a26-9aa9-47dfe3a03bea",
508
+ "key": "baidu"
509
+ }
510
+ ],
511
+ "presencePenaltyEnabled": true,
512
+ "presence_penalty": 0.4,
513
+ "prompt": "Role: You are an intelligent assistant. \nTask: Chat with user. Answer the question based on the provided content from: Knowledge Base, Wikipedia, Duckduckgo, Baidu.\nRequirements:\n - Answer should be in markdown format.\n - Answer should include all sources(Knowledge Base, Wikipedia, Duckduckgo, Baidu) as long as they are relevant, and label the sources of the cited content separately.\n - Attach URL links to the content which is quoted from Wikipedia, DuckDuckGo or Baidu.\n - Do not make thing up when there's no relevant information to user's question. \n\n## Knowledge base content\n {kb_input}\n\n\n## Wikipedia content\n{wikipedia}\n\n\n## Duckduckgo content\n{duckduckgo}\n\n\n## Baidu content\n{baidu}",
514
+ "temperature": 0.1,
515
+ "temperatureEnabled": true,
516
+ "topPEnabled": true,
517
+ "top_p": 0.3
518
+ },
519
+ "label": "Generate",
520
+ "name": "LLM"
521
+ },
522
+ "dragging": false,
523
+ "height": 150,
524
+ "id": "Generate:FullYearsStick",
525
+ "position": {
526
+ "x": -355.85244068796055,
527
+ "y": -225.5280777950136
528
+ },
529
+ "positionAbsolute": {
530
+ "x": -355.85244068796055,
531
+ "y": -225.5280777950136
532
+ },
533
+ "selected": true,
534
+ "sourcePosition": "right",
535
+ "targetPosition": "left",
536
+ "type": "logicNode",
537
+ "width": 150
538
+ }
539
+ ]
540
+ },
541
+ "history": [],
542
+ "messages": [],
543
+ "path": [],
544
+ "reference": []
545
+ },
546
+ "avatar": ""
547
+ }
agent/test/client.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ import argparse
17
+ import os
18
+ from functools import partial
19
+ from agent.canvas import Canvas
20
+ from agent.settings import DEBUG
21
+
22
+ if __name__ == '__main__':
23
+ parser = argparse.ArgumentParser()
24
+ dsl_default_path = os.path.join(
25
+ os.path.dirname(os.path.realpath(__file__)),
26
+ "dsl_examples",
27
+ "retrieval_and_generate.json",
28
+ )
29
+ parser.add_argument('-s', '--dsl', default=dsl_default_path, help="input dsl", action='store', required=True)
30
+ parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
31
+ parser.add_argument('-m', '--stream', default=False, help="Stream output", action='store_true', required=False)
32
+ args = parser.parse_args()
33
+
34
+ canvas = Canvas(open(args.dsl, "r").read(), args.tenant_id)
35
+ while True:
36
+ ans = canvas.run(stream=args.stream)
37
+ print("==================== Bot =====================\n> ", end='')
38
+ if args.stream and isinstance(ans, partial):
39
+ cont = ""
40
+ for an in ans():
41
+ print(an["content"][len(cont):], end='', flush=True)
42
+ cont = an["content"]
43
+ else:
44
+ print(ans["content"])
45
+
46
+ if DEBUG: print(canvas.path)
47
+ question = input("\n==================== User =====================\n> ")
48
+ canvas.add_user_input(question)
agent/test/dsl_examples/categorize.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "components": {
3
+ "begin": {
4
+ "obj":{
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "Hi there!"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["categorize:0"],
19
+ "upstream": ["begin"]
20
+ },
21
+ "categorize:0": {
22
+ "obj": {
23
+ "component_name": "Categorize",
24
+ "params": {
25
+ "llm_id": "deepseek-chat",
26
+ "category_description": {
27
+ "product_related": {
28
+ "description": "The question is about the product usage, appearance and how it works.",
29
+ "examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?"
30
+ },
31
+ "others": {
32
+ "description": "The question is not about the product usage, appearance and how it works.",
33
+ "examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?"
34
+ }
35
+ }
36
+ }
37
+ },
38
+ "downstream": [],
39
+ "upstream": ["answer:0"]
40
+ }
41
+ },
42
+ "history": [],
43
+ "path": [],
44
+ "answer": []
45
+ }
agent/test/dsl_examples/customer_service.json ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "components": {
3
+ "begin": {
4
+ "obj":{
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "Hi! How can I help you?"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["categorize:0"],
19
+ "upstream": ["begin", "generate:0", "generate:casual", "generate:answer", "generate:complain", "generate:ask_contact", "message:get_contact"]
20
+ },
21
+ "categorize:0": {
22
+ "obj": {
23
+ "component_name": "Categorize",
24
+ "params": {
25
+ "llm_id": "deepseek-chat",
26
+ "category_description": {
27
+ "product_related": {
28
+ "description": "The question is about the product usage, appearance and how it works.",
29
+ "examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?\nException: Can't connect to ES cluster\nHow to build the RAGFlow image from scratch",
30
+ "to": "retrieval:0"
31
+ },
32
+ "casual": {
33
+ "description": "The question is not about the product usage, appearance and how it works. Just casual chat.",
34
+ "examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
35
+ "to": "generate:casual"
36
+ },
37
+ "complain": {
38
+ "description": "Complain even curse about the product or service you provide. But the comment is not specific enough.",
39
+ "examples": "How bad is it.\nIt's really sucks.\nDamn, for God's sake, can it be more steady?\nShit, I just can't use this shit.\nI can't stand it anymore.",
40
+ "to": "generate:complain"
41
+ },
42
+ "answer": {
43
+ "description": "This answer provide a specific contact information, like e-mail, phone number, wechat number, line number, twitter, discord, etc,.",
44
+ "examples": "My phone number is 203921\nkevinhu.hk@gmail.com\nThis is my discord number: johndowson_29384",
45
+ "to": "message:get_contact"
46
+ }
47
+ },
48
+ "message_history_window_size": 8
49
+ }
50
+ },
51
+ "downstream": ["retrieval:0", "generate:casual", "generate:complain", "message:get_contact"],
52
+ "upstream": ["answer:0"]
53
+ },
54
+ "generate:casual": {
55
+ "obj": {
56
+ "component_name": "Generate",
57
+ "params": {
58
+ "llm_id": "deepseek-chat",
59
+ "prompt": "You are a customer support. But the customer wants to have a casual chat with you instead of consulting about the product. Be nice, funny, enthusiasm and concern.",
60
+ "temperature": 0.9,
61
+ "message_history_window_size": 12,
62
+ "cite": false
63
+ }
64
+ },
65
+ "downstream": ["answer:0"],
66
+ "upstream": ["categorize:0"]
67
+ },
68
+ "generate:complain": {
69
+ "obj": {
70
+ "component_name": "Generate",
71
+ "params": {
72
+ "llm_id": "deepseek-chat",
73
+ "prompt": "You are a customer support. the Customers complain even curse about the products but not specific enough. You need to ask him/her what's the specific problem with the product. Be nice, patient and concern to soothe your customers’ emotions at first place.",
74
+ "temperature": 0.9,
75
+ "message_history_window_size": 12,
76
+ "cite": false
77
+ }
78
+ },
79
+ "downstream": ["answer:0"],
80
+ "upstream": ["categorize:0"]
81
+ },
82
+ "retrieval:0": {
83
+ "obj": {
84
+ "component_name": "Retrieval",
85
+ "params": {
86
+ "similarity_threshold": 0.2,
87
+ "keywords_similarity_weight": 0.3,
88
+ "top_n": 6,
89
+ "top_k": 1024,
90
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
91
+ "kb_ids": ["869a236818b811ef91dffa163e197198"]
92
+ }
93
+ },
94
+ "downstream": ["relevant:0"],
95
+ "upstream": ["categorize:0"]
96
+ },
97
+ "relevant:0": {
98
+ "obj": {
99
+ "component_name": "Relevant",
100
+ "params": {
101
+ "llm_id": "deepseek-chat",
102
+ "temperature": 0.02,
103
+ "yes": "generate:answer",
104
+ "no": "generate:ask_contact"
105
+ }
106
+ },
107
+ "downstream": ["generate:answer", "generate:ask_contact"],
108
+ "upstream": ["retrieval:0"]
109
+ },
110
+ "generate:answer": {
111
+ "obj": {
112
+ "component_name": "Generate",
113
+ "params": {
114
+ "llm_id": "deepseek-chat",
115
+ "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
116
+ "temperature": 0.02
117
+ }
118
+ },
119
+ "downstream": ["answer:0"],
120
+ "upstream": ["relevant:0"]
121
+ },
122
+ "generate:ask_contact": {
123
+ "obj": {
124
+ "component_name": "Generate",
125
+ "params": {
126
+ "llm_id": "deepseek-chat",
127
+ "prompt": "You are a customer support. But you can't answer to customers' question. You need to request their contact like E-mail, phone number, Wechat number, LINE number, twitter, discord, etc,. Product experts will contact them later. Please do not ask the same question twice.",
128
+ "temperature": 0.9,
129
+ "message_history_window_size": 12,
130
+ "cite": false
131
+ }
132
+ },
133
+ "downstream": ["answer:0"],
134
+ "upstream": ["relevant:0"]
135
+ },
136
+ "message:get_contact": {
137
+ "obj":{
138
+ "component_name": "Message",
139
+ "params": {
140
+ "messages": [
141
+ "Okay, I've already write this down. What else I can do for you?",
142
+ "Get it. What else I can do for you?",
143
+ "Thanks for your trust! Our expert will contact ASAP. So, anything else I can do for you?",
144
+ "Thanks! So, anything else I can do for you?"
145
+ ]
146
+ }
147
+ },
148
+ "downstream": ["answer:0"],
149
+ "upstream": ["categorize:0"]
150
+ }
151
+ },
152
+ "history": [],
153
+ "messages": [],
154
+ "path": [],
155
+ "reference": [],
156
+ "answer": []
157
+ }
agent/test/dsl_examples/headhunter_zh.json ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "components": {
3
+ "begin": {
4
+ "obj": {
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "您好!我是AGI方向的猎头,了解到您是这方面的大佬,然后冒昧的就联系到您。这边有个机会想和您分享,RAGFlow正在招聘您这个岗位的资深的工程师不知道您那边是不是感兴趣?"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["categorize:0"],
19
+ "upstream": ["begin", "message:reject"]
20
+ },
21
+ "categorize:0": {
22
+ "obj": {
23
+ "component_name": "Categorize",
24
+ "params": {
25
+ "llm_id": "deepseek-chat",
26
+ "category_description": {
27
+ "about_job": {
28
+ "description": "该问题关于职位本身或公司的信息。",
29
+ "examples": "什么岗位?\n汇报对象是谁?\n公司多少人?\n公司有啥产品?\n具体工作内容是啥?\n地点哪里?\n双休吗?",
30
+ "to": "retrieval:0"
31
+ },
32
+ "casual": {
33
+ "description": "该问题不关于职位本身或公司的信息,属于闲聊。",
34
+ "examples": "你好\n好久不见\n你男的女的?\n你是猴子派来的救兵吗?\n上午开会了?\n你叫啥?\n最近市场如何?生意好做吗?",
35
+ "to": "generate:casual"
36
+ },
37
+ "interested": {
38
+ "description": "该回答表示他对于该职位感兴趣。",
39
+ "examples": "嗯\n说吧\n说说看\n还好吧\n是的\n哦\nyes\n具体说说",
40
+ "to": "message:introduction"
41
+ },
42
+ "answer": {
43
+ "description": "该回答表示他对于该职位不感兴趣,或感觉受到骚扰。",
44
+ "examples": "不需要\n不感兴趣\n暂时不看\n不要\nno\n我已经不干这个了\n我不是这个方向的",
45
+ "to": "message:reject"
46
+ }
47
+ }
48
+ }
49
+ },
50
+ "downstream": [
51
+ "message:introduction",
52
+ "generate:casual",
53
+ "message:reject",
54
+ "retrieval:0"
55
+ ],
56
+ "upstream": ["answer:0"]
57
+ },
58
+ "message:introduction": {
59
+ "obj": {
60
+ "component_name": "Message",
61
+ "params": {
62
+ "messages": [
63
+ "我简单介绍以下:\nRAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。https://github.com/infiniflow/ragflow\n您那边还有什么要了解的?"
64
+ ]
65
+ }
66
+ },
67
+ "downstream": ["answer:1"],
68
+ "upstream": ["categorize:0"]
69
+ },
70
+ "answer:1": {
71
+ "obj": {
72
+ "component_name": "Answer",
73
+ "params": {}
74
+ },
75
+ "downstream": ["categorize:1"],
76
+ "upstream": [
77
+ "message:introduction",
78
+ "generate:aboutJob",
79
+ "generate:casual",
80
+ "generate:get_wechat",
81
+ "generate:nowechat"
82
+ ]
83
+ },
84
+ "categorize:1": {
85
+ "obj": {
86
+ "component_name": "Categorize",
87
+ "params": {
88
+ "llm_id": "deepseek-chat",
89
+ "category_description": {
90
+ "about_job": {
91
+ "description": "该问题关于职位本身或公司的信息。",
92
+ "examples": "什么岗位?\n汇报对象是谁?\n公司多少人?\n公司有啥产品?\n具体工作内容是啥?\n地点哪里?\n双休吗?",
93
+ "to": "retrieval:0"
94
+ },
95
+ "casual": {
96
+ "description": "该问题不关于职位本身或公司的信息,属于闲聊。",
97
+ "examples": "你好\n好久不见\n你男的女的?\n你是猴子派来的救兵吗?\n上午开会了?\n你叫啥?\n最近市场如何?生意好做吗?",
98
+ "to": "generate:casual"
99
+ },
100
+ "wechat": {
101
+ "description": "该回答表示他愿意加微信,或者已经报了微信号。",
102
+ "examples": "嗯\n可以\n是的\n哦\nyes\n15002333453\nwindblow_2231",
103
+ "to": "generate:get_wechat"
104
+ },
105
+ "giveup": {
106
+ "description": "该回答表示他不愿意加微信。",
107
+ "examples": "不需要\n不感兴趣\n暂时不看\n不要\nno\n不方便\n不知道还要加我微信",
108
+ "to": "generate:nowechat"
109
+ }
110
+ },
111
+ "message_history_window_size": 8
112
+ }
113
+ },
114
+ "downstream": [
115
+ "retrieval:0",
116
+ "generate:casual",
117
+ "generate:get_wechat",
118
+ "generate:nowechat"
119
+ ],
120
+ "upstream": ["answer:1"]
121
+ },
122
+ "generate:casual": {
123
+ "obj": {
124
+ "component_name": "Generate",
125
+ "params": {
126
+ "llm_id": "deepseek-chat",
127
+ "prompt": "你是AGI方向的猎头,现在候选人的聊了和职位无关的话题,请耐心的回应候选人,并将话题往该AGI的职位上带,最好能要到候选人微信号以便后面保持联系。",
128
+ "temperature": 0.9,
129
+ "message_history_window_size": 12,
130
+ "cite": false
131
+ }
132
+ },
133
+ "downstream": ["answer:1"],
134
+ "upstream": ["categorize:0", "categorize:1"]
135
+ },
136
+ "retrieval:0": {
137
+ "obj": {
138
+ "component_name": "Retrieval",
139
+ "params": {
140
+ "similarity_threshold": 0.2,
141
+ "keywords_similarity_weight": 0.3,
142
+ "top_n": 6,
143
+ "top_k": 1024,
144
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
145
+ "kb_ids": ["869a236818b811ef91dffa163e197198"]
146
+ }
147
+ },
148
+ "downstream": ["generate:aboutJob"],
149
+ "upstream": ["categorize:0", "categorize:1"]
150
+ },
151
+ "generate:aboutJob": {
152
+ "obj": {
153
+ "component_name": "Generate",
154
+ "params": {
155
+ "llm_id": "deepseek-chat",
156
+ "prompt": "你是AGI方向的猎头,候选人问了有关职位或公司的问题,你根据以下职位信息回答。如果职位信息中不包含候选人的问题就回答不清楚、不知道、有待确认等。回答完后引导候选人加微信号,如:\n - 方便加一下微信吗,我把JD发您看看?\n - 微信号多少,我把详细职位JD发您?\n 职位信息如下:\n {input}\n 职位信息如上。",
157
+ "temperature": 0.02
158
+ }
159
+ },
160
+ "downstream": ["answer:1"],
161
+ "upstream": ["retrieval:0"]
162
+ },
163
+ "generate:get_wechat": {
164
+ "obj": {
165
+ "component_name": "Generate",
166
+ "params": {
167
+ "llm_id": "deepseek-chat",
168
+ "prompt": "你是AGI方向的猎头,候选人表示不反感加微信,如果对方已经报了微信号,表示感谢和信任并表示马上会加上;如果没有,则问对方微信号多少。你的微信号是weixin_kevin,E-mail是kkk@ragflow.com。说话不要重复。不要总是您好。",
169
+ "temperature": 0.1,
170
+ "message_history_window_size": 12,
171
+ "cite": false
172
+ }
173
+ },
174
+ "downstream": ["answer:1"],
175
+ "upstream": ["categorize:1"]
176
+ },
177
+ "generate:nowechat": {
178
+ "obj": {
179
+ "component_name": "Generate",
180
+ "params": {
181
+ "llm_id": "deepseek-chat",
182
+ "prompt": "你是AGI方向的猎头,当你提出加微信时对方表示拒绝。你需要耐心礼貌的回应候选人,表示对于保护隐私信息给予理解,也可以询问他对该职位的看法和顾虑。并在恰当的时机再次询问微信联系方式。也可以鼓励候选人主动与你取得联系。你的微信号是weixin_kevin,E-mail是kkk@ragflow.com。说话不要重复。不要总是您好。",
183
+ "temperature": 0.1,
184
+ "message_history_window_size": 12,
185
+ "cite": false
186
+ }
187
+ },
188
+ "downstream": ["answer:1"],
189
+ "upstream": ["categorize:1"]
190
+ },
191
+ "message:reject": {
192
+ "obj": {
193
+ "component_name": "Message",
194
+ "params": {
195
+ "messages": [
196
+ "好的,祝您生活愉快,工作顺利。",
197
+ "哦,好的,感谢您宝贵的时间!"
198
+ ]
199
+ }
200
+ },
201
+ "downstream": ["answer:0"],
202
+ "upstream": ["categorize:0"]
203
+ }
204
+ },
205
+ "history": [],
206
+ "messages": [],
207
+ "path": [],
208
+ "reference": [],
209
+ "answer": []
210
+ }
agent/test/dsl_examples/intergreper.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "components": {
3
+ "begin": {
4
+ "obj":{
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "Hi there! Please enter the text you want to translate in format like: 'text you want to translate' => target language. For an example: 您好! => English"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["generate:0"],
19
+ "upstream": ["begin", "generate:0"]
20
+ },
21
+ "generate:0": {
22
+ "obj": {
23
+ "component_name": "Generate",
24
+ "params": {
25
+ "llm_id": "deepseek-chat",
26
+ "prompt": "You are an professional interpreter.\n- Role: an professional interpreter.\n- Input format: content need to be translated => target language. \n- Answer format: => translated content in target language. \n- Examples:\n - user: 您好! => English. assistant: => How are you doing!\n - user: You look good today. => Japanese. assistant: => 今日は調子がいいですね 。\n",
27
+ "temperature": 0.5
28
+ }
29
+ },
30
+ "downstream": ["answer:0"],
31
+ "upstream": ["answer:0"]
32
+ }
33
+ },
34
+ "history": [],
35
+ "messages": [],
36
+ "reference": {},
37
+ "path": [],
38
+ "answer": []
39
+ }
agent/test/dsl_examples/interpreter.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "components": {
3
+ "begin": {
4
+ "obj":{
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "Hi there! Please enter the text you want to translate in format like: 'text you want to translate' => target language. For an example: 您好! => English"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["generate:0"],
19
+ "upstream": ["begin", "generate:0"]
20
+ },
21
+ "generate:0": {
22
+ "obj": {
23
+ "component_name": "Generate",
24
+ "params": {
25
+ "llm_id": "deepseek-chat",
26
+ "prompt": "You are an professional interpreter.\n- Role: an professional interpreter.\n- Input format: content need to be translated => target language. \n- Answer format: => translated content in target language. \n- Examples:\n - user: 您好! => English. assistant: => How are you doing!\n - user: You look good today. => Japanese. assistant: => 今日は調子がいいですね 。\n",
27
+ "temperature": 0.5
28
+ }
29
+ },
30
+ "downstream": ["answer:0"],
31
+ "upstream": ["answer:0"]
32
+ }
33
+ },
34
+ "history": [],
35
+ "messages": [],
36
+ "reference": {},
37
+ "path": [],
38
+ "answer": []
39
+ }
agent/test/dsl_examples/keyword_wikipedia_and_generate.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "components": {
3
+ "begin": {
4
+ "obj":{
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "Hi there!"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["keyword:0"],
19
+ "upstream": ["begin"]
20
+ },
21
+ "keyword:0": {
22
+ "obj": {
23
+ "component_name": "KeywordExtract",
24
+ "params": {
25
+ "llm_id": "deepseek-chat",
26
+ "prompt": "- Role: You're a question analyzer.\n - Requirements:\n - Summarize user's question, and give top %s important keyword/phrase.\n - Use comma as a delimiter to separate keywords/phrases.\n - Answer format: (in language of user's question)\n - keyword: ",
27
+ "temperature": 0.2,
28
+ "top_n": 1
29
+ }
30
+ },
31
+ "downstream": ["wikipedia:0"],
32
+ "upstream": ["answer:0"]
33
+ },
34
+ "wikipedia:0": {
35
+ "obj":{
36
+ "component_name": "Wikipedia",
37
+ "params": {
38
+ "top_n": 10
39
+ }
40
+ },
41
+ "downstream": ["generate:0"],
42
+ "upstream": ["keyword:0"]
43
+ },
44
+ "generate:1": {
45
+ "obj": {
46
+ "component_name": "Generate",
47
+ "params": {
48
+ "llm_id": "deepseek-chat",
49
+ "prompt": "You are an intelligent assistant. Please answer the question based on content from Wikipedia. When the answer from Wikipedia is incomplete, you need to output the URL link of the corresponding content as well. When all the content searched from Wikipedia is irrelevant to the question, your answer must include the sentence, \"The answer you are looking for is not found in the Wikipedia!\". Answers need to consider chat history.\n The content of Wikipedia is as follows:\n {input}\n The above is the content of Wikipedia.",
50
+ "temperature": 0.2
51
+ }
52
+ },
53
+ "downstream": ["answer:0"],
54
+ "upstream": ["wikipedia:0"]
55
+ }
56
+ },
57
+ "history": [],
58
+ "path": [],
59
+ "messages": [],
60
+ "reference": {},
61
+ "answer": []
62
+ }
agent/test/dsl_examples/retrieval_and_generate.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "components": {
3
+ "begin": {
4
+ "obj":{
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "Hi there!"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["retrieval:0"],
19
+ "upstream": ["begin", "generate:0"]
20
+ },
21
+ "retrieval:0": {
22
+ "obj": {
23
+ "component_name": "Retrieval",
24
+ "params": {
25
+ "similarity_threshold": 0.2,
26
+ "keywords_similarity_weight": 0.3,
27
+ "top_n": 6,
28
+ "top_k": 1024,
29
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
30
+ "kb_ids": ["869a236818b811ef91dffa163e197198"]
31
+ }
32
+ },
33
+ "downstream": ["generate:0"],
34
+ "upstream": ["answer:0"]
35
+ },
36
+ "generate:0": {
37
+ "obj": {
38
+ "component_name": "Generate",
39
+ "params": {
40
+ "llm_id": "deepseek-chat",
41
+ "prompt": "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\n Here is the knowledge base:\n {input}\n The above is the knowledge base.",
42
+ "temperature": 0.2
43
+ }
44
+ },
45
+ "downstream": ["answer:0"],
46
+ "upstream": ["retrieval:0"]
47
+ }
48
+ },
49
+ "history": [],
50
+ "messages": [],
51
+ "reference": {},
52
+ "path": [],
53
+ "answer": []
54
+ }
agent/test/dsl_examples/retrieval_categorize_and_generate.json ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "components": {
3
+ "begin": {
4
+ "obj":{
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "Hi there!"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["categorize:0"],
19
+ "upstream": ["begin", "generate:0", "switch:0"]
20
+ },
21
+ "categorize:0": {
22
+ "obj": {
23
+ "component_name": "Categorize",
24
+ "params": {
25
+ "llm_id": "deepseek-chat",
26
+ "category_description": {
27
+ "product_related": {
28
+ "description": "The question is about the product usage, appearance and how it works.",
29
+ "examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
30
+ "to": "retrieval:0"
31
+ },
32
+ "others": {
33
+ "description": "The question is not about the product usage, appearance and how it works.",
34
+ "examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
35
+ "to": "message:0"
36
+ }
37
+ }
38
+ }
39
+ },
40
+ "downstream": ["retrieval:0", "message:0"],
41
+ "upstream": ["answer:0"]
42
+ },
43
+ "message:0": {
44
+ "obj":{
45
+ "component_name": "Message",
46
+ "params": {
47
+ "messages": [
48
+ "Sorry, I don't know. I'm an AI bot."
49
+ ]
50
+ }
51
+ },
52
+ "downstream": ["answer:0"],
53
+ "upstream": ["categorize:0"]
54
+ },
55
+ "retrieval:0": {
56
+ "obj": {
57
+ "component_name": "Retrieval",
58
+ "params": {
59
+ "similarity_threshold": 0.2,
60
+ "keywords_similarity_weight": 0.3,
61
+ "top_n": 6,
62
+ "top_k": 1024,
63
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
64
+ "kb_ids": ["869a236818b811ef91dffa163e197198"]
65
+ }
66
+ },
67
+ "downstream": ["generate:0"],
68
+ "upstream": ["switch:0"]
69
+ },
70
+ "generate:0": {
71
+ "obj": {
72
+ "component_name": "Generate",
73
+ "params": {
74
+ "llm_id": "deepseek-chat",
75
+ "prompt": "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\n Here is the knowledge base:\n {input}\n The above is the knowledge base.",
76
+ "temperature": 0.2
77
+ }
78
+ },
79
+ "downstream": ["answer:0"],
80
+ "upstream": ["retrieval:0"]
81
+ }
82
+ },
83
+ "history": [],
84
+ "messages": [],
85
+ "reference": {},
86
+ "path": [],
87
+ "answer": []
88
+ }
agent/test/dsl_examples/retrieval_relevant_and_generate.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "components": {
3
+ "begin": {
4
+ "obj":{
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "Hi there!"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["retrieval:0"],
19
+ "upstream": ["begin", "generate:0", "switch:0"]
20
+ },
21
+ "retrieval:0": {
22
+ "obj": {
23
+ "component_name": "Retrieval",
24
+ "params": {
25
+ "similarity_threshold": 0.2,
26
+ "keywords_similarity_weight": 0.3,
27
+ "top_n": 6,
28
+ "top_k": 1024,
29
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
30
+ "kb_ids": ["869a236818b811ef91dffa163e197198"],
31
+ "empty_response": "Sorry, knowledge base has noting related information."
32
+ }
33
+ },
34
+ "downstream": ["relevant:0"],
35
+ "upstream": ["answer:0"]
36
+ },
37
+ "relevant:0": {
38
+ "obj": {
39
+ "component_name": "Relevant",
40
+ "params": {
41
+ "llm_id": "deepseek-chat",
42
+ "temperature": 0.02,
43
+ "yes": "generate:0",
44
+ "no": "message:0"
45
+ }
46
+ },
47
+ "downstream": ["message:0", "generate:0"],
48
+ "upstream": ["retrieval:0"]
49
+ },
50
+ "generate:0": {
51
+ "obj": {
52
+ "component_name": "Generate",
53
+ "params": {
54
+ "llm_id": "deepseek-chat",
55
+ "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
56
+ "temperature": 0.2
57
+ }
58
+ },
59
+ "downstream": ["answer:0"],
60
+ "upstream": ["relevant:0"]
61
+ },
62
+ "message:0": {
63
+ "obj":{
64
+ "component_name": "Message",
65
+ "params": {
66
+ "messages": [
67
+ "Sorry, I don't know. Please leave your contact, our experts will contact you later. What's your e-mail/phone/wechat?",
68
+ "I'm an AI bot and not quite sure about this question. Please leave your contact, our experts will contact you later. What's your e-mail/phone/wechat?",
69
+ "Can't find answer in my knowledge base. Please leave your contact, our experts will contact you later. What's your e-mail/phone/wechat?"
70
+ ]
71
+ }
72
+ },
73
+ "downstream": ["answer:0"],
74
+ "upstream": ["relevant:0"]
75
+ }
76
+ },
77
+ "history": [],
78
+ "path": [],
79
+ "messages": [],
80
+ "reference": {},
81
+ "answer": []
82
+ }
agent/test/dsl_examples/retrieval_relevant_keyword_baidu_and_generate.json ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "components": {
3
+ "begin": {
4
+ "obj":{
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "Hi there!"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["retrieval:0"],
19
+ "upstream": ["begin"]
20
+ },
21
+ "retrieval:0": {
22
+ "obj": {
23
+ "component_name": "Retrieval",
24
+ "params": {
25
+ "similarity_threshold": 0.2,
26
+ "keywords_similarity_weight": 0.3,
27
+ "top_n": 6,
28
+ "top_k": 1024,
29
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
30
+ "kb_ids": ["21ca4e6a2c8911ef8b1e0242ac120006"],
31
+ "empty_response": "Sorry, knowledge base has noting related information."
32
+ }
33
+ },
34
+ "downstream": ["relevant:0"],
35
+ "upstream": ["answer:0"]
36
+ },
37
+ "relevant:0": {
38
+ "obj": {
39
+ "component_name": "Relevant",
40
+ "params": {
41
+ "llm_id": "deepseek-chat",
42
+ "temperature": 0.02,
43
+ "yes": "generate:0",
44
+ "no": "keyword:0"
45
+ }
46
+ },
47
+ "downstream": ["keyword:0", "generate:0"],
48
+ "upstream": ["retrieval:0"]
49
+ },
50
+ "generate:0": {
51
+ "obj": {
52
+ "component_name": "Generate",
53
+ "params": {
54
+ "llm_id": "deepseek-chat",
55
+ "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
56
+ "temperature": 0.2
57
+ }
58
+ },
59
+ "downstream": ["answer:0"],
60
+ "upstream": ["relevant:0"]
61
+ },
62
+ "keyword:0": {
63
+ "obj": {
64
+ "component_name": "KeywordExtract",
65
+ "params": {
66
+ "llm_id": "deepseek-chat",
67
+ "prompt": "- Role: You're a question analyzer.\n - Requirements:\n - Summarize user's question, and give top %s important keyword/phrase.\n - Use comma as a delimiter to separate keywords/phrases.\n - Answer format: (in language of user's question)\n - keyword: ",
68
+ "temperature": 0.2,
69
+ "top_n": 1
70
+ }
71
+ },
72
+ "downstream": ["baidu:0"],
73
+ "upstream": ["relevant:0"]
74
+ },
75
+ "baidu:0": {
76
+ "obj":{
77
+ "component_name": "Baidu",
78
+ "params": {
79
+ "top_n": 10
80
+ }
81
+ },
82
+ "downstream": ["generate:1"],
83
+ "upstream": ["keyword:0"]
84
+ },
85
+ "generate:1": {
86
+ "obj": {
87
+ "component_name": "Generate",
88
+ "params": {
89
+ "llm_id": "deepseek-chat",
90
+ "prompt": "You are an intelligent assistant. Please answer the question based on content searched from Baidu. When the answer from a Baidu search is incomplete, you need to output the URL link of the corresponding content as well. When all the content searched from Baidu is irrelevant to the question, your answer must include the sentence, \"The answer you are looking for is not found in the Baidu search!\". Answers need to consider chat history.\n The content of Baidu search is as follows:\n {input}\n The above is the content of Baidu search.",
91
+ "temperature": 0.2
92
+ }
93
+ },
94
+ "downstream": ["answer:0"],
95
+ "upstream": ["baidu:0"]
96
+ }
97
+ },
98
+ "history": [],
99
+ "path": [],
100
+ "messages": [],
101
+ "reference": {},
102
+ "answer": []
103
+ }
agent/test/dsl_examples/retrieval_relevant_rewrite_and_generate.json ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "components": {
3
+ "begin": {
4
+ "obj":{
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "Hi there!"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["retrieval:0"],
19
+ "upstream": ["begin", "generate:0", "switch:0"]
20
+ },
21
+ "retrieval:0": {
22
+ "obj": {
23
+ "component_name": "Retrieval",
24
+ "params": {
25
+ "similarity_threshold": 0.2,
26
+ "keywords_similarity_weight": 0.3,
27
+ "top_n": 6,
28
+ "top_k": 1024,
29
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
30
+ "kb_ids": ["869a236818b811ef91dffa163e197198"],
31
+ "empty_response": "Sorry, knowledge base has noting related information."
32
+ }
33
+ },
34
+ "downstream": ["relevant:0"],
35
+ "upstream": ["answer:0", "rewrite:0"]
36
+ },
37
+ "relevant:0": {
38
+ "obj": {
39
+ "component_name": "Relevant",
40
+ "params": {
41
+ "llm_id": "deepseek-chat",
42
+ "temperature": 0.02,
43
+ "yes": "generate:0",
44
+ "no": "rewrite:0"
45
+ }
46
+ },
47
+ "downstream": ["generate:0", "rewrite:0"],
48
+ "upstream": ["retrieval:0"]
49
+ },
50
+ "generate:0": {
51
+ "obj": {
52
+ "component_name": "Generate",
53
+ "params": {
54
+ "llm_id": "deepseek-chat",
55
+ "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
56
+ "temperature": 0.02
57
+ }
58
+ },
59
+ "downstream": ["answer:0"],
60
+ "upstream": ["relevant:0"]
61
+ },
62
+ "rewrite:0": {
63
+ "obj":{
64
+ "component_name": "RewriteQuestion",
65
+ "params": {
66
+ "llm_id": "deepseek-chat",
67
+ "temperature": 0.8
68
+ }
69
+ },
70
+ "downstream": ["retrieval:0"],
71
+ "upstream": ["relevant:0"]
72
+ }
73
+ },
74
+ "history": [],
75
+ "messages": [],
76
+ "path": [],
77
+ "reference": [],
78
+ "answer": []
79
+ }
api/__init__.py ADDED
File without changes
api/apps/__init__.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ import logging
17
+ import os
18
+ import sys
19
+ from importlib.util import module_from_spec, spec_from_file_location
20
+ from pathlib import Path
21
+ from flask import Blueprint, Flask
22
+ from werkzeug.wrappers.request import Request
23
+ from flask_cors import CORS
24
+
25
+ from api.db import StatusEnum
26
+ from api.db.db_models import close_connection
27
+ from api.db.services import UserService
28
+ from api.utils import CustomJSONEncoder, commands
29
+
30
+ from flask_session import Session
31
+ from flask_login import LoginManager
32
+ from api.settings import SECRET_KEY, stat_logger
33
+ from api.settings import API_VERSION, access_logger
34
+ from api.utils.api_utils import server_error_response
35
+ from itsdangerous.url_safe import URLSafeTimedSerializer as Serializer
36
+
37
+ __all__ = ['app']
38
+
39
+
40
+ logger = logging.getLogger('flask.app')
41
+ for h in access_logger.handlers:
42
+ logger.addHandler(h)
43
+
44
+ Request.json = property(lambda self: self.get_json(force=True, silent=True))
45
+
46
+ app = Flask(__name__)
47
+ CORS(app, supports_credentials=True,max_age=2592000)
48
+ app.url_map.strict_slashes = False
49
+ app.json_encoder = CustomJSONEncoder
50
+ app.errorhandler(Exception)(server_error_response)
51
+
52
+
53
+ ## convince for dev and debug
54
+ #app.config["LOGIN_DISABLED"] = True
55
+ app.config["SESSION_PERMANENT"] = False
56
+ app.config["SESSION_TYPE"] = "filesystem"
57
+ app.config['MAX_CONTENT_LENGTH'] = int(os.environ.get("MAX_CONTENT_LENGTH", 128 * 1024 * 1024))
58
+
59
+ Session(app)
60
+ login_manager = LoginManager()
61
+ login_manager.init_app(app)
62
+
63
+ commands.register_commands(app)
64
+
65
+
66
+ def search_pages_path(pages_dir):
67
+ app_path_list = [path for path in pages_dir.glob('*_app.py') if not path.name.startswith('.')]
68
+ api_path_list = [path for path in pages_dir.glob('*_api.py') if not path.name.startswith('.')]
69
+ app_path_list.extend(api_path_list)
70
+ return app_path_list
71
+
72
+
73
+ def register_page(page_path):
74
+ path = f'{page_path}'
75
+
76
+ page_name = page_path.stem.rstrip('_api') if "_api" in path else page_path.stem.rstrip('_app')
77
+ module_name = '.'.join(page_path.parts[page_path.parts.index('api'):-1] + (page_name,))
78
+
79
+ spec = spec_from_file_location(module_name, page_path)
80
+ page = module_from_spec(spec)
81
+ page.app = app
82
+ page.manager = Blueprint(page_name, module_name)
83
+ sys.modules[module_name] = page
84
+ spec.loader.exec_module(page)
85
+ page_name = getattr(page, 'page_name', page_name)
86
+ url_prefix = f'/api/{API_VERSION}/{page_name}' if "_api" in path else f'/{API_VERSION}/{page_name}'
87
+
88
+ app.register_blueprint(page.manager, url_prefix=url_prefix)
89
+ return url_prefix
90
+
91
+
92
+ pages_dir = [
93
+ Path(__file__).parent,
94
+ Path(__file__).parent.parent / 'api' / 'apps', # FIXME: ragflow/api/api/apps, can be remove?
95
+ ]
96
+
97
+ client_urls_prefix = [
98
+ register_page(path)
99
+ for dir in pages_dir
100
+ for path in search_pages_path(dir)
101
+ ]
102
+
103
+
104
+ @login_manager.request_loader
105
+ def load_user(web_request):
106
+ jwt = Serializer(secret_key=SECRET_KEY)
107
+ authorization = web_request.headers.get("Authorization")
108
+ if authorization:
109
+ try:
110
+ access_token = str(jwt.loads(authorization))
111
+ user = UserService.query(access_token=access_token, status=StatusEnum.VALID.value)
112
+ if user:
113
+ return user[0]
114
+ else:
115
+ return None
116
+ except Exception as e:
117
+ stat_logger.exception(e)
118
+ return None
119
+ else:
120
+ return None
121
+
122
+
123
+ @app.teardown_request
124
+ def _db_close(exc):
125
+ close_connection()