# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from abc import ABC import pandas as pd from api.db import LLMType from api.db.services.knowledgebase_service import KnowledgebaseService from api.db.services.llm_service import LLMBundle from api.settings import retrievaler from agent.component.base import ComponentBase, ComponentParamBase class CiteParam(ComponentParamBase): """ Define the Retrieval component parameters. """ def __init__(self): super().__init__() self.cite_sources = [] def check(self): self.check_empty(self.cite_source, "Please specify where you want to cite from.") class Cite(ComponentBase, ABC): component_name = "Cite" def _run(self, history, **kwargs): input = "\n- ".join(self.get_input()["content"]) sources = [self._canvas.get_component(cpn_id).output()[1] for cpn_id in self._param.cite_source] query = [] for role, cnt in history[::-1][:self._param.message_history_window_size]: if role != "user":continue query.append(cnt) query = "\n".join(query) kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids) if not kbs: raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids)) embd_nms = list(set([kb.embd_id for kb in kbs])) assert len(embd_nms) == 1, "Knowledge bases use different embedding models." embd_mdl = LLMBundle(kbs[0].tenant_id, LLMType.EMBEDDING, embd_nms[0]) rerank_mdl = None if self._param.rerank_id: rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id) kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids, 1, self._param.top_n, self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight, aggs=False, rerank_mdl=rerank_mdl) if not kbinfos["chunks"]: return pd.DataFrame() df = pd.DataFrame(kbinfos["chunks"]) df["content"] = df["content_with_weight"] del df["content_with_weight"] return df