# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re from abc import ABC from api.db import LLMType from api.db.services.llm_service import LLMBundle from agent.component import GenerateParam, Generate from agent.settings import DEBUG class KeywordExtractParam(GenerateParam): """ Define the KeywordExtract component parameters. """ def __init__(self): super().__init__() self.top_n = 1 def check(self): super().check() self.check_positive_integer(self.top_n, "Top N") def get_prompt(self): self.prompt = """ - Role: You're a question analyzer. - Requirements: - Summarize user's question, and give top %s important keyword/phrase. - Use comma as a delimiter to separate keywords/phrases. - Answer format: (in language of user's question) - keyword: """ % self.top_n return self.prompt class KeywordExtract(Generate, ABC): component_name = "KeywordExtract" def _run(self, history, **kwargs): q = "" for r, c in self._canvas.history[::-1]: if r == "user": q += c break chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id) ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}], self._param.gen_conf()) ans = re.sub(r".*keyword:", "", ans).strip() if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::") return KeywordExtract.be_output(ans)