# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from abc import ABC from api.db import LLMType from api.db.services.llm_service import LLMBundle from agent.component import GenerateParam, Generate from rag.utils import num_tokens_from_string, encoder class RelevantParam(GenerateParam): """ Define the Relevant component parameters. """ def __init__(self): super().__init__() self.prompt = "" self.yes = "" self.no = "" def check(self): super().check() self.check_empty(self.yes, "[Relevant] 'Yes'") self.check_empty(self.no, "[Relevant] 'No'") def get_prompt(self): self.prompt = """ You are a grader assessing relevance of a retrieved document to a user question. It does not need to be a stringent test. The goal is to filter out erroneous retrievals. If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. No other words needed except 'yes' or 'no'. """ return self.prompt class Relevant(Generate, ABC): component_name = "Relevant" def _run(self, history, **kwargs): q = "" for r, c in self._canvas.history[::-1]: if r == "user": q = c break ans = self.get_input() ans = " - ".join(ans["content"]) if "content" in ans else "" if not ans: return Relevant.be_output(self._param.no) ans = "Documents: \n" + ans ans = f"Question: {q}\n" + ans chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id) if num_tokens_from_string(ans) >= chat_mdl.max_length - 4: ans = encoder.decode(encoder.encode(ans)[:chat_mdl.max_length - 4]) ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": ans}], self._param.gen_conf()) print(ans, ":::::::::::::::::::::::::::::::::") if ans.lower().find("yes") >= 0: return Relevant.be_output(self._param.yes) if ans.lower().find("no") >= 0: return Relevant.be_output(self._param.no) assert False, f"Relevant component got: {ans}"