File size: 4,130 Bytes
2f459d5
 
 
 
 
 
16a00d2
2f459d5
 
 
 
 
 
 
 
 
fafa09c
2f459d5
 
fafa09c
2f459d5
 
fafa09c
878a400
 
 
 
 
 
fafa09c
2f459d5
 
 
 
878a400
2f459d5
fafa09c
2f459d5
878a400
2f459d5
 
878a400
 
 
2f459d5
878a400
2f459d5
 
878a400
2f459d5
fafa09c
878a400
 
 
 
 
 
fafa09c
2f459d5
 
 
 
878a400
 
fafa09c
878a400
 
 
 
 
 
fafa09c
2f459d5
822433e
 
16a00d2
822433e
 
 
 
fafa09c
 
16a00d2
 
822433e
16a00d2
822433e
 
 
 
 
 
 
1b34cfa
822433e
 
 
1b34cfa
822433e
 
 
 
 
 
 
 
 
7069fb2
fafa09c
 
 
 
878a400
16a00d2
 
 
fafa09c
 
 
 
 
7538d68
fafa09c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
tags:
- spacy
- token-classification
language:
- ja
license: cc-by-sa-4.0
model-index:
- name: ja_core_news_lg
  results:
  - task:
      name: NER
      type: token-classification
    metrics:
    - name: NER Precision
      type: precision
      value: 0.7388362652
    - name: NER Recall
      type: recall
      value: 0.6867924528
    - name: NER F Score
      type: f_score
      value: 0.7118644068
  - task:
      name: TAG
      type: token-classification
    metrics:
    - name: TAG (XPOS) Accuracy
      type: accuracy
      value: 0.9713282143
  - task:
      name: POS
      type: token-classification
    metrics:
    - name: POS (UPOS) Accuracy
      type: accuracy
      value: 0.9742268041
  - task:
      name: MORPH
      type: token-classification
    metrics:
    - name: Morph (UFeats) Accuracy
      type: accuracy
      value: 0.0
  - task:
      name: LEMMA
      type: token-classification
    metrics:
    - name: Lemma Accuracy
      type: accuracy
      value: 0.9670499959
  - task:
      name: UNLABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Unlabeled Attachment Score (UAS)
      type: f_score
      value: 0.9212481426
  - task:
      name: LABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Labeled Attachment Score (LAS)
      type: f_score
      value: 0.9089518668
  - task:
      name: SENTS
      type: token-classification
    metrics:
    - name: Sentences F-Score
      type: f_score
      value: 0.9658536585
---
### Details: https://spacy.io/models/ja#ja_core_news_lg

Japanese pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler.

| Feature | Description |
| --- | --- |
| **Name** | `ja_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 480443 keys, 480443 unique vectors (300 dimensions) |
| **Sources** | [UD Japanese GSD v2.8](https://github.com/UniversalDependencies/UD_Japanese-GSD) (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel)<br />[UD Japanese GSD v2.8 NER](https://github.com/megagonlabs/UD_Japanese-GSD) (Megagon Labs Tokyo)<br />[chiVe: Japanese Word Embedding with Sudachi & NWJC (chive-1.1-mc90-500k)](https://github.com/WorksApplications/chiVe) (Works Applications) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |

### Label Scheme

<details>

<summary>View label scheme (65 labels for 3 components)</summary>

| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=NOUN`, `POS=ADP`, `POS=VERB`, `POS=SCONJ`, `POS=AUX`, `POS=PUNCT`, `POS=PART`, `POS=DET`, `POS=NUM`, `POS=ADV`, `POS=PRON`, `POS=ADJ`, `POS=PROPN`, `POS=CCONJ`, `POS=SYM`, `POS=NOUN\|Polarity=Neg`, `POS=AUX\|Polarity=Neg`, `POS=SPACE`, `POS=INTJ`, `POS=SCONJ\|Polarity=Neg` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `aux`, `case`, `cc`, `ccomp`, `compound`, `cop`, `csubj`, `dep`, `det`, `dislocated`, `fixed`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `punct` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `MOVEMENT`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PET_NAME`, `PHONE`, `PRODUCT`, `QUANTITY`, `TIME`, `TITLE_AFFIX`, `WORK_OF_ART` |

</details>

### Accuracy

| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.37 |
| `TOKEN_P` | 97.64 |
| `TOKEN_R` | 97.88 |
| `TOKEN_F` | 97.76 |
| `POS_ACC` | 97.42 |
| `MORPH_ACC` | 0.00 |
| `MORPH_MICRO_P` | 34.01 |
| `MORPH_MICRO_R` | 98.04 |
| `MORPH_MICRO_F` | 50.51 |
| `SENTS_P` | 95.56 |
| `SENTS_R` | 97.63 |
| `SENTS_F` | 96.59 |
| `DEP_UAS` | 92.12 |
| `DEP_LAS` | 90.90 |
| `TAG_ACC` | 97.13 |
| `LEMMA_ACC` | 96.70 |
| `ENTS_P` | 73.88 |
| `ENTS_R` | 68.68 |
| `ENTS_F` | 71.19 |