File size: 3,969 Bytes
856faeb
 
 
 
 
 
ffe2dc9
856faeb
 
 
 
 
 
 
 
 
9409659
856faeb
 
9409659
856faeb
 
9409659
bc843e6
 
 
 
 
 
9409659
856faeb
 
 
 
bc843e6
856faeb
9409659
856faeb
bc843e6
856faeb
 
bc843e6
 
 
856faeb
bc843e6
856faeb
 
bc843e6
856faeb
9409659
bc843e6
 
 
 
 
 
9409659
856faeb
 
 
 
bc843e6
 
9409659
bc843e6
 
 
 
 
 
9409659
856faeb
ce93cd3
 
ffe2dc9
ce93cd3
 
 
 
9409659
 
ffe2dc9
 
ce93cd3
ffe2dc9
ce93cd3
 
 
 
 
 
 
871a9a9
ce93cd3
 
 
871a9a9
ce93cd3
 
 
 
 
 
 
 
 
a82b0b4
9409659
 
 
 
bc843e6
ffe2dc9
 
 
9409659
 
 
 
 
ac7f8a8
9409659
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
tags:
- spacy
- token-classification
language:
- ja
license: cc-by-sa-4.0
model-index:
- name: ja_core_news_sm
  results:
  - task:
      name: NER
      type: token-classification
    metrics:
    - name: NER Precision
      type: precision
      value: 0.7109375
    - name: NER Recall
      type: recall
      value: 0.572327044
    - name: NER F Score
      type: f_score
      value: 0.6341463415
  - task:
      name: TAG
      type: token-classification
    metrics:
    - name: TAG (XPOS) Accuracy
      type: accuracy
      value: 0.9713282143
  - task:
      name: POS
      type: token-classification
    metrics:
    - name: POS (UPOS) Accuracy
      type: accuracy
      value: 0.9612599714
  - task:
      name: MORPH
      type: token-classification
    metrics:
    - name: Morph (UFeats) Accuracy
      type: accuracy
      value: 0.0
  - task:
      name: LEMMA
      type: token-classification
    metrics:
    - name: Lemma Accuracy
      type: accuracy
      value: 0.9670499959
  - task:
      name: UNLABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Unlabeled Attachment Score (UAS)
      type: f_score
      value: 0.9195153808
  - task:
      name: LABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Labeled Attachment Score (LAS)
      type: f_score
      value: 0.9047554776
  - task:
      name: SENTS
      type: token-classification
    metrics:
    - name: Sentences F-Score
      type: f_score
      value: 0.9832841691
---
### Details: https://spacy.io/models/ja#ja_core_news_sm

Japanese pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler.

| Feature | Description |
| --- | --- |
| **Name** | `ja_core_news_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Japanese GSD v2.8](https://github.com/UniversalDependencies/UD_Japanese-GSD) (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel)<br />[UD Japanese GSD v2.8 NER](https://github.com/megagonlabs/UD_Japanese-GSD) (Megagon Labs Tokyo) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |

### Label Scheme

<details>

<summary>View label scheme (65 labels for 3 components)</summary>

| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=NOUN`, `POS=ADP`, `POS=VERB`, `POS=SCONJ`, `POS=AUX`, `POS=PUNCT`, `POS=PART`, `POS=DET`, `POS=NUM`, `POS=ADV`, `POS=PRON`, `POS=ADJ`, `POS=PROPN`, `POS=CCONJ`, `POS=SYM`, `POS=NOUN\|Polarity=Neg`, `POS=AUX\|Polarity=Neg`, `POS=SPACE`, `POS=INTJ`, `POS=SCONJ\|Polarity=Neg` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `aux`, `case`, `cc`, `ccomp`, `compound`, `cop`, `csubj`, `dep`, `det`, `dislocated`, `fixed`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `punct` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `MOVEMENT`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PET_NAME`, `PHONE`, `PRODUCT`, `QUANTITY`, `TIME`, `TITLE_AFFIX`, `WORK_OF_ART` |

</details>

### Accuracy

| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.37 |
| `TOKEN_P` | 97.64 |
| `TOKEN_R` | 97.88 |
| `TOKEN_F` | 97.76 |
| `POS_ACC` | 96.13 |
| `MORPH_ACC` | 0.00 |
| `MORPH_MICRO_P` | 34.01 |
| `MORPH_MICRO_R` | 98.04 |
| `MORPH_MICRO_F` | 50.51 |
| `SENTS_P` | 98.04 |
| `SENTS_R` | 98.62 |
| `SENTS_F` | 98.33 |
| `DEP_UAS` | 91.95 |
| `DEP_LAS` | 90.48 |
| `TAG_ACC` | 97.13 |
| `LEMMA_ACC` | 96.70 |
| `ENTS_P` | 71.09 |
| `ENTS_R` | 57.23 |
| `ENTS_F` | 63.41 |