spaly99 commited on
Commit
51e66b3
1 Parent(s): 8582903

Add SetFit model

Browse files
Files changed (5) hide show
  1. README.md +80 -3
  2. config.json +1 -1
  3. config_setfit.json +2 -2
  4. model.safetensors +1 -1
  5. model_head.pkl +2 -2
README.md CHANGED
@@ -7,10 +7,40 @@ tags:
7
  - generated_from_setfit_trainer
8
  metrics:
9
  - accuracy
10
- widget: []
 
 
 
 
 
 
 
11
  pipeline_tag: text-classification
12
  inference: true
13
  base_model: sentence-transformers/paraphrase-mpnet-base-v2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
@@ -29,7 +59,7 @@ The model has been trained using an efficient few-shot learning technique that i
29
  - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
30
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
31
  - **Maximum Sequence Length:** 512 tokens
32
- <!-- - **Number of Classes:** Unknown -->
33
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
34
  <!-- - **Language:** Unknown -->
35
  <!-- - **License:** Unknown -->
@@ -40,6 +70,19 @@ The model has been trained using an efficient few-shot learning technique that i
40
  - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
41
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  ## Uses
44
 
45
  ### Direct Use for Inference
@@ -58,7 +101,7 @@ from setfit import SetFitModel
58
  # Download from the 🤗 Hub
59
  model = SetFitModel.from_pretrained("setfit_model_id")
60
  # Run inference
61
- preds = model("I loved the spiderman movie!")
62
  ```
63
 
64
  <!--
@@ -87,6 +130,40 @@ preds = model("I loved the spiderman movie!")
87
 
88
  ## Training Details
89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  ### Framework Versions
91
  - Python: 3.11.0
92
  - SetFit: 1.0.3
 
7
  - generated_from_setfit_trainer
8
  metrics:
9
  - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ widget:
14
+ - text: 'Recognized as one of the Most Energy Efficient Dealerships in North America! '
15
+ - text: 'Nespresso VertuoLine WS Keurig 2.0 '
16
+ - text: Threat Intelligence & Brand Reputation
17
+ - text: 'FpeANUTOUTTER- CUPS '
18
  pipeline_tag: text-classification
19
  inference: true
20
  base_model: sentence-transformers/paraphrase-mpnet-base-v2
21
+ model-index:
22
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: Text Classification
27
+ dataset:
28
+ name: Unknown
29
+ type: unknown
30
+ split: test
31
+ metrics:
32
+ - type: accuracy
33
+ value: 1.0
34
+ name: Accuracy
35
+ - type: precision
36
+ value: 1.0
37
+ name: Precision
38
+ - type: recall
39
+ value: 1.0
40
+ name: Recall
41
+ - type: f1
42
+ value: 1.0
43
+ name: F1
44
  ---
45
 
46
  # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
 
59
  - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
60
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
61
  - **Maximum Sequence Length:** 512 tokens
62
+ - **Number of Classes:** 2 classes
63
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
64
  <!-- - **Language:** Unknown -->
65
  <!-- - **License:** Unknown -->
 
70
  - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
71
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
72
 
73
+ ### Model Labels
74
+ | Label | Examples |
75
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
76
+ | True | <ul><li>'Solve lunch first. Introducing The 12™, made with seasoned Canadian chicken breast, fresh tomato and crisp lettuce. '</li><li>'MAKE THE MOST OF _ Notional Ube Chocoleté Diy '</li><li>'ee ee Ra bere car 100% nisared } Bon ard whist riekes is wo ire. Ta fag eesti eas nen Pa asered, hoathy and hing groen with every sip of Potand Spring? Grand 100% Natural Spring Warler you eqioy. '</li></ul> |
77
+ | False | <ul><li>'Wykorzystywanie ograniczonych danych do wyboru treści '</li><li>'GitHub'</li><li>'Draftsmen'</li></ul> |
78
+
79
+ ## Evaluation
80
+
81
+ ### Metrics
82
+ | Label | Accuracy | Precision | Recall | F1 |
83
+ |:--------|:---------|:----------|:-------|:----|
84
+ | **all** | 1.0 | 1.0 | 1.0 | 1.0 |
85
+
86
  ## Uses
87
 
88
  ### Direct Use for Inference
 
101
  # Download from the 🤗 Hub
102
  model = SetFitModel.from_pretrained("setfit_model_id")
103
  # Run inference
104
+ preds = model("FpeANUTOUTTER- CUPS ")
105
  ```
106
 
107
  <!--
 
130
 
131
  ## Training Details
132
 
133
+ ### Training Set Metrics
134
+ | Training set | Min | Median | Max |
135
+ |:-------------|:----|:-------|:----|
136
+ | Word count | 1 | 7.5625 | 41 |
137
+
138
+ | Label | Training Sample Count |
139
+ |:------|:----------------------|
140
+ | False | 9 |
141
+ | True | 7 |
142
+
143
+ ### Training Hyperparameters
144
+ - batch_size: (16, 2)
145
+ - num_epochs: (1, 16)
146
+ - max_steps: -1
147
+ - sampling_strategy: oversampling
148
+ - num_iterations: 20
149
+ - body_learning_rate: (2e-05, 1e-05)
150
+ - head_learning_rate: 0.01
151
+ - loss: CosineSimilarityLoss
152
+ - distance_metric: cosine_distance
153
+ - margin: 0.25
154
+ - end_to_end: False
155
+ - use_amp: False
156
+ - warmup_proportion: 0.1
157
+ - seed: 42
158
+ - run_name: PG-OCR-test-3
159
+ - eval_max_steps: -1
160
+ - load_best_model_at_end: False
161
+
162
+ ### Training Results
163
+ | Epoch | Step | Training Loss | Validation Loss |
164
+ |:-----:|:----:|:-------------:|:---------------:|
165
+ | 0.025 | 1 | 0.027 | - |
166
+
167
  ### Framework Versions
168
  - Python: 3.11.0
169
  - SetFit: 1.0.3
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": ".\\checkpoints\\step_40000",
3
  "architectures": [
4
  "MPNetModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "./checkpoints/step_40000",
3
  "architectures": [
4
  "MPNetModel"
5
  ],
config_setfit.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
- "normalize_embeddings": false,
3
- "labels": null
4
  }
 
1
  {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ccc9eabb2bed6b0474cfde9bf6282572870bbecdc4af6b037bd4d1ccee4282cc
3
  size 437967672
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89f5739a71defce2ac7dec21880b882bda50bb113142bc8aa2e84c888cfed3d0
3
  size 437967672
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1a5123222ff61c8279245c95109da57c7edb17109c2707880488dee9345b272b
3
- size 324
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b6921bc7c043fff49732928e715283280385477f91eac02d750811a2262cbc5
3
+ size 6991