--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - sparkleai/Diarizers_dataset_test model-index: - name: Diarizers_finetuned_model_test results: [] --- # Diarizers_finetuned_model_test This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the sparkleai/Diarizers_dataset_test default dataset. It achieves the following results on the evaluation set: - Loss: 0.7692 - Der: 0.2484 - False Alarm: 0.0450 - Missed Detection: 0.0910 - Confusion: 0.1124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | No log | 1.0 | 6 | 0.8050 | 0.2813 | 0.0708 | 0.1119 | 0.0986 | | No log | 2.0 | 12 | 0.7748 | 0.2592 | 0.0547 | 0.0991 | 0.1054 | | No log | 3.0 | 18 | 0.7718 | 0.2502 | 0.0447 | 0.0941 | 0.1114 | | No log | 4.0 | 24 | 0.7677 | 0.2484 | 0.0448 | 0.0915 | 0.1121 | | No log | 5.0 | 30 | 0.7692 | 0.2484 | 0.0450 | 0.0910 | 0.1124 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1