--- library_name: transformers base_model: spear-model/mbert-kmeans-0.05.mmarco.L-all-en.S-all.30K tags: - generated_from_trainer model-index: - name: mbert-kmeans-0.05.mmarco.L-all-en.S-all.30K.distill-test.mt5-base-mmarco-v2.30K results: [] --- # mbert-kmeans-0.05.mmarco.L-all-en.S-all.30K.distill-test.mt5-base-mmarco-v2.30K This model is a fine-tuned version of [spear-model/mbert-kmeans-0.05.mmarco.L-all-en.S-all.30K](https://huggingface.co/spear-model/mbert-kmeans-0.05.mmarco.L-all-en.S-all.30K) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 30000 ### Training results ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0