cemsubakan commited on
Commit
9e4f7a6
1 Parent(s): 69d88c6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -0
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: "en"
3
+ thumbnail:
4
+ tags:
5
+ - Source Separation
6
+ - Speech Separation
7
+ - Audio Source Separation
8
+ - SepFormer
9
+ - speechbrain
10
+ license: "apache-2.0"
11
+ datasets:
12
+ - WSJ0-2Mix
13
+ metrics:
14
+ - SI-SNRi
15
+ - SDRi
16
+
17
+ ---
18
+
19
+
20
+ # SepFormer trained on WSJ0-2Mix
21
+
22
+ This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2)
23
+ model, implemented with SpeechBrain, and pretrained on WSJ0-2Mix dataset. For a better experience we encourage you to learn more about
24
+ [SpeechBrain](https://speechbrain.github.io). The model performance is 22.4 dB on the test set of WSJ0-2Mix dataset.
25
+
26
+ | Release | Test-Set SI-SNRi | Test-Set SDRi |
27
+ |:-------------:|:--------------:|:--------------:|
28
+ | 09-03-21 | 22.4dB | 22.6dB |
29
+
30
+
31
+ ## Install SpeechBrain
32
+
33
+ First of all, please install SpeechBrain with the following command:
34
+
35
+ ```
36
+ pip install speechbrain
37
+ ```
38
+
39
+ Please notice that we encourage you to read our tutorials and learn more about
40
+ [SpeechBrain](https://speechbrain.github.io).
41
+
42
+ ### Perform source separation on your own audio file
43
+ ```python
44
+ from speechbrain.pretrained import SepformerSeparation as separator
45
+ import torchaudio
46
+
47
+ model = separator.from_hparams(source="speechbrain/sepformer-wsj02mix", savedir='pretrained_models/sepformer-wsj02mix')
48
+
49
+ # for custom file, change path
50
+ est_sources = model.separate_file(path='speechbrain/sepformer-wsj02mix/test_mixture.wav')
51
+
52
+ torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000)
53
+ torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000)
54
+
55
+ ```
56
+
57
+ ### Inference on GPU
58
+ To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
59
+
60
+ ### Training
61
+ The model was trained with SpeechBrain (fc2eabb7).
62
+ To train it from scratch follows these steps:
63
+ 1. Clone SpeechBrain:
64
+ ```bash
65
+ git clone https://github.com/speechbrain/speechbrain/
66
+ ```
67
+ 2. Install it:
68
+ ```
69
+ cd speechbrain
70
+ pip install -r requirements.txt
71
+ pip install -e .
72
+ ```
73
+
74
+ 3. Run Training:
75
+ ```
76
+ cd recipes/WSJ0Mix/separation
77
+ python train.py hparams/sepformer.yaml --data_folder=your_data_folder
78
+ ```
79
+
80
+ You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1cON-eqtKv_NYnJhaE9VjLT_e2ybn-O7u?usp=sharing).
81
+
82
+ ### Limitations
83
+ The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
84
+
85
+ #### Referencing SpeechBrain
86
+
87
+ ```bibtex
88
+ @misc{speechbrain,
89
+ title={{SpeechBrain}: A General-Purpose Speech Toolkit},
90
+ author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
91
+ year={2021},
92
+ eprint={2106.04624},
93
+ archivePrefix={arXiv},
94
+ primaryClass={eess.AS},
95
+ note={arXiv:2106.04624}
96
+ }
97
+ ```
98
+
99
+
100
+ #### Referencing SepFormer
101
+ ```bibtex
102
+ @inproceedings{subakan2021attention,
103
+ title={Attention is All You Need in Speech Separation},
104
+ author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
105
+ year={2021},
106
+ booktitle={ICASSP 2021}
107
+ }
108
+ ```
109
+
110
+ # **About SpeechBrain**
111
+ - Website: https://speechbrain.github.io/
112
+ - Code: https://github.com/speechbrain/speechbrain/
113
+ - HuggingFace: https://huggingface.co/speechbrain/