poonehmousavi's picture
Update hyperparams.yaml
351f618
raw
history blame
3.94 kB
# ################################
# Model: Transducer ASR
# Augmentation: SpecAugment
# Authors: Pooneh Mousavi 2023
# ################################
# Feature parameters (FBANKS etc)
sample_rate: 16000
n_fft: 400
n_mels: 80
# Model parameters
activation: !name:torch.nn.LeakyReLU
dropout: 0.15
cnn_blocks: 3
cnn_channels: (128, 200, 256)
inter_layer_pooling_size: (2, 2, 2)
cnn_kernelsize: (3, 3)
time_pooling_size: 4
rnn_class: !name:speechbrain.nnet.RNN.LSTM
rnn_layers: 5
rnn_neurons: 1024
rnn_bidirectional: True
dnn_blocks: 2
dnn_neurons: 1024
dec_neurons: 1024
joint_dim: 1024
# Outputs
output_neurons: 1000 # BPE size, index(blank/eos/bos) = 0
# transducer_beam_search : True
# Decoding parameters
# Be sure that the bos and eos index match with the BPEs ones
blank_index: 0
bos_index: 0
eos_index: 0
min_decode_ratio: 0.0
max_decode_ratio: 1.0
beam_size: 4
nbest: 1
# by default {state,expand}_beam = 2.3 as mention in paper
# https://arxiv.org/abs/1904.02619
state_beam: 2.3
expand_beam: 2.3
transducer_beam_search: True
normalizer: !new:speechbrain.processing.features.InputNormalization
norm_type: global
compute_features: !new:speechbrain.lobes.features.Fbank
sample_rate: !ref <sample_rate>
n_fft: !ref <n_fft>
n_mels: !ref <n_mels>
enc: !new:speechbrain.lobes.models.CRDNN.CRDNN
input_shape: [null, null, !ref <n_mels>]
activation: !ref <activation>
dropout: !ref <dropout>
cnn_blocks: !ref <cnn_blocks>
cnn_channels: !ref <cnn_channels>
cnn_kernelsize: !ref <cnn_kernelsize>
inter_layer_pooling_size: !ref <inter_layer_pooling_size>
time_pooling: True
using_2d_pooling: False
time_pooling_size: !ref <time_pooling_size>
rnn_class: !ref <rnn_class>
rnn_layers: !ref <rnn_layers>
rnn_neurons: !ref <rnn_neurons>
rnn_bidirectional: !ref <rnn_bidirectional>
rnn_re_init: True
dnn_blocks: !ref <dnn_blocks>
dnn_neurons: !ref <dnn_neurons>
enc_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dnn_neurons>
n_neurons: !ref <joint_dim>
emb: !new:speechbrain.nnet.embedding.Embedding
num_embeddings: !ref <output_neurons>
consider_as_one_hot: True
blank_id: !ref <blank_index>
dec: !new:speechbrain.nnet.RNN.GRU
input_shape: [null, null, !ref <output_neurons> - 1]
hidden_size: !ref <dec_neurons>
num_layers: 1
re_init: True
# For MTL with LM over the decoder
dec_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dec_neurons>
n_neurons: !ref <joint_dim>
bias: False
Tjoint: !new:speechbrain.nnet.transducer.transducer_joint.Transducer_joint
joint: sum # joint [sum | concat]
nonlinearity: !ref <activation>
transducer_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <joint_dim>
n_neurons: !ref <output_neurons>
bias: False
log_softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: True
asr_model: !new:torch.nn.ModuleList
- [!ref <enc>, !ref <emb>, !ref <dec>, !ref <transducer_lin>]
tokenizer: !new:sentencepiece.SentencePieceProcessor
# We compose the inference (encoder) pipeline.
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
input_shape: [null, null, !ref <n_mels>]
compute_features: !ref <compute_features>
normalize: !ref <normalizer>
model: !ref <enc>
decoder: !new:speechbrain.decoders.transducer.TransducerBeamSearcher
decode_network_lst: [!ref <emb>, !ref <dec>]
tjoint: !ref <Tjoint>
classifier_network: [!ref <transducer_lin>]
blank_id: !ref <blank_index>
beam_size: !ref <beam_size>
nbest: !ref <nbest>
state_beam: !ref <state_beam>
expand_beam: !ref <expand_beam>
modules:
normalizer: !ref <normalizer>
encoder: !ref <encoder>
decoder: !ref <decoder>
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
normalizer: !ref <normalizer>
asr: !ref <asr_model>
tokenizer: !ref <tokenizer>