File size: 4,326 Bytes
1ee2947
102da0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee2947
102da0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
language: "en"
thumbnail:
pipeline_tag: automatic-speech-recognition
tags:
- CTC
- Attention
- pytorch
- speechbrain
- Transformer
license: "apache-2.0"
datasets:
- commonvoice
metrics:
- wer
- cer
---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# wav2vec 2.0 with CTC/Attention trained on CommonVoice Italian (No LM)

This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on CommonVoice (Italian Language) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). 

The performance of the model is the following:

| Release | Test WER | GPUs |
|:--------------:|:--------------:| :--------:|
| 03-06-21 | 9.86 | 2xV100 32GB |

## Pipeline description

This ASR system is composed of 2 different but linked blocks:
- Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions (train.tsv) of CommonVoice (EN).
- Acoustic model (wav2vec2.0 + CTC/Attention). A pretrained wav2vec 2.0 model ([facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli)) is combined with two DNN layers and finetuned on CommonVoice En. 
The obtained final acoustic representation is given to the CTC and attention decoders.

The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.

## Install SpeechBrain

First of all, please install tranformers and SpeechBrain with the following command:

```
pip install speechbrain transformers
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Transcribing your own audio files (in Italian)

```python
from speechbrain.pretrained import EncoderDecoderASR

asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-it", savedir="pretrained_models/asr-wav2vec2-commonvoice-it")
asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-it/example-it.wav")

```
### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

## Parallel Inference on a Batch
Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model.

### Training
The model was trained with SpeechBrain.
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```bash
cd recipes/CommonVoice/ASR/seq2seq
python train_with_wav2vec.py hparams/train_it_with_wav2vec.yaml --data_folder=your_data_folder
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1tjz6IZmVRkuRE97E7h1cXFoGTer7pT73?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/


# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.

```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```