speechbrain
PyTorch
Chinese
CTC
wav2vec2
File size: 4,806 Bytes
5be032d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""Custom Interface for AISHELL-1 CTC inference
An external tokenizer is used so some special tokens
need to be specified during decoding

Authors
 * Yingzhi Wang 2022
"""

import torch
from speechbrain.pretrained import Pretrained


class CustomEncoderDecoderASR(Pretrained):
    """A ready-to-use Encoder-Decoder ASR model
    The class can be used either to run only the encoder (encode()) to extract
    features or to run the entire encoder-decoder model
    (transcribe()) to transcribe speech. The given YAML must contains the fields
    specified in the *_NEEDED[] lists.
    Example
    -------
    >>> from speechbrain.pretrained import EncoderDecoderASR
    >>> tmpdir = getfixture("tmpdir")
    >>> asr_model = EncoderDecoderASR.from_hparams(
    ...     source="speechbrain/asr-crdnn-rnnlm-librispeech",
    ...     savedir=tmpdir,
    ... )
    >>> asr_model.transcribe_file("tests/samples/single-mic/example2.flac")
    "MY FATHER HAS REVEALED THE CULPRIT'S NAME"
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.tokenizer = self.hparams.tokenizer

    def transcribe_file(self, path):
        """Transcribes the given audiofile into a sequence of words.
        Arguments
        ---------
        path : str
            Path to audio file which to transcribe.
        Returns
        -------
        str
            The audiofile transcription produced by this ASR system.
        """
        waveform = self.load_audio(path)
        # Fake a batch:
        batch = waveform.unsqueeze(0)
        rel_length = torch.tensor([1.0])
        predicted_words = self.transcribe_batch(
            batch, rel_length
        )
        return predicted_words[0]

    def encode_batch(self, wavs):
        """Encodes the input audio into a sequence of hidden states
        The waveforms should already be in the model's desired format.
        You can call:
        ``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
        to get a correctly converted signal in most cases.
        Arguments
        ---------
        wavs : torch.tensor
            Batch of waveforms [batch, time, channels] or [batch, time]
            depending on the model.
        wav_lens : torch.tensor
            Lengths of the waveforms relative to the longest one in the
            batch, tensor of shape [batch]. The longest one should have
            relative length 1.0 and others len(waveform) / max_length.
            Used for ignoring padding.
        Returns
        -------
        torch.tensor
            The encoded batch
        """
        wavs = wavs.float()
        wavs = wavs.to(self.device)
        outputs = self.mods.wav2vec2(wavs)
        outputs = self.mods.enc(outputs)
        outputs = self.mods.ctc_lin(outputs)
        return outputs

    def transcribe_batch(self, wavs, wav_lens):
        """Transcribes the input audio into a sequence of words
        The waveforms should already be in the model's desired format.
        You can call:
        ``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
        to get a correctly converted signal in most cases.
        Arguments
        ---------
        wavs : torch.tensor
            Batch of waveforms [batch, time, channels] or [batch, time]
            depending on the model.
        wav_lens : torch.tensor
            Lengths of the waveforms relative to the longest one in the
            batch, tensor of shape [batch]. The longest one should have
            relative length 1.0 and others len(waveform) / max_length.
            Used for ignoring padding.
        Returns
        -------
        list
            Each waveform in the batch transcribed.
        tensor
            Each predicted token id.
        """
        with torch.no_grad():
            wav_lens = wav_lens.to(self.device)
            encoder_out = self.encode_batch(wavs)
            p_ctc = self.hparams.log_softmax(encoder_out)
            sequences = self.hparams.decoder(p_ctc, wav_lens)
            predicted_words_list = []
            for sequence in sequences:
                predicted_tokens = self.tokenizer.convert_ids_to_tokens(
                    sequence
                )
                predicted_words = []
                for c in predicted_tokens:
                    if c == "[CLS]":
                        continue
                    elif c == "[SEP]" or c == "[PAD]":
                        break
                    else:
                        predicted_words.append(c)
                predicted_words_list.append(predicted_words)

        return predicted_words_list

    def forward(self, wavs, wav_lens):
        """Runs full transcription - note: no gradients through decoding"""
        return self.transcribe_batch(wavs, wav_lens)