poonehmousavi
commited on
Commit
•
5925f2c
1
Parent(s):
bd71d20
Delete custom_interface.py
Browse files- custom_interface.py +0 -127
custom_interface.py
DELETED
@@ -1,127 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from speechbrain.pretrained import Pretrained
|
3 |
-
|
4 |
-
class WhisperASR(Pretrained):
|
5 |
-
"""A ready-to-use Whisper ASR model
|
6 |
-
|
7 |
-
The class can be used to run only the encoder (encode()) to run the entire encoder-decoder whisper model
|
8 |
-
(transcribe()) to transcribe speech. The given YAML must contains the fields
|
9 |
-
specified in the *_NEEDED[] lists.
|
10 |
-
|
11 |
-
Example
|
12 |
-
-------
|
13 |
-
>>> from speechbrain.pretrained.interfaces import foreign_class
|
14 |
-
>>> tmpdir = getfixture("tmpdir")
|
15 |
-
>>> asr_model = foreign_class(source="hf",
|
16 |
-
... pymodule_file="custom_interface.py",
|
17 |
-
... classname="WhisperASR",
|
18 |
-
... hparams_file='hparams.yaml',
|
19 |
-
... savedir=tmpdir,
|
20 |
-
... )
|
21 |
-
>>> asr_model.transcribe_file("tests/samples/example2.wav")
|
22 |
-
"""
|
23 |
-
|
24 |
-
HPARAMS_NEEDED = ['language']
|
25 |
-
MODULES_NEEDED = ["whisper", "decoder"]
|
26 |
-
|
27 |
-
def __init__(self, *args, **kwargs):
|
28 |
-
super().__init__(*args, **kwargs)
|
29 |
-
self.tokenizer = self.hparams.whisper.tokenizer
|
30 |
-
self.tokenizer.set_prefix_tokens(self.hparams.language, "transcribe", False)
|
31 |
-
self.hparams.decoder.set_decoder_input_tokens(
|
32 |
-
self.tokenizer.prefix_tokens
|
33 |
-
)
|
34 |
-
|
35 |
-
def transcribe_file(self, path):
|
36 |
-
"""Transcribes the given audiofile into a sequence of words.
|
37 |
-
|
38 |
-
Arguments
|
39 |
-
---------
|
40 |
-
path : str
|
41 |
-
Path to audio file which to transcribe.
|
42 |
-
|
43 |
-
Returns
|
44 |
-
-------
|
45 |
-
str
|
46 |
-
The audiofile transcription produced by this ASR system.
|
47 |
-
"""
|
48 |
-
waveform = self.load_audio(path)
|
49 |
-
# Fake a batch:
|
50 |
-
batch = waveform.unsqueeze(0)
|
51 |
-
rel_length = torch.tensor([1.0])
|
52 |
-
predicted_words, predicted_tokens = self.transcribe_batch(
|
53 |
-
batch, rel_length
|
54 |
-
)
|
55 |
-
return predicted_words
|
56 |
-
|
57 |
-
def encode_batch(self, wavs, wav_lens):
|
58 |
-
"""Encodes the input audio into a sequence of hidden states
|
59 |
-
|
60 |
-
The waveforms should already be in the model's desired format.
|
61 |
-
You can call:
|
62 |
-
``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
|
63 |
-
to get a correctly converted signal in most cases.
|
64 |
-
|
65 |
-
Arguments
|
66 |
-
---------
|
67 |
-
wavs : torch.tensor
|
68 |
-
Batch of waveforms [batch, time, channels].
|
69 |
-
wav_lens : torch.tensor
|
70 |
-
Lengths of the waveforms relative to the longest one in the
|
71 |
-
batch, tensor of shape [batch]. The longest one should have
|
72 |
-
relative length 1.0 and others len(waveform) / max_length.
|
73 |
-
Used for ignoring padding.
|
74 |
-
|
75 |
-
Returns
|
76 |
-
-------
|
77 |
-
torch.tensor
|
78 |
-
The encoded batch
|
79 |
-
"""
|
80 |
-
wavs = wavs.float()
|
81 |
-
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
82 |
-
encoder_out = self.mods.whisper.forward_encoder(wavs)
|
83 |
-
return encoder_out
|
84 |
-
|
85 |
-
def transcribe_batch(self, wavs, wav_lens):
|
86 |
-
"""Transcribes the input audio into a sequence of words
|
87 |
-
|
88 |
-
The waveforms should already be in the model's desired format.
|
89 |
-
You can call:
|
90 |
-
``normalized = EncoderDecoderASR.normalizer(signal, sample_rate)``
|
91 |
-
to get a correctly converted signal in most cases.
|
92 |
-
|
93 |
-
Arguments
|
94 |
-
---------
|
95 |
-
wavs : torch.tensor
|
96 |
-
Batch of waveforms [batch, time, channels].
|
97 |
-
wav_lens : torch.tensor
|
98 |
-
Lengths of the waveforms relative to the longest one in the
|
99 |
-
batch, tensor of shape [batch]. The longest one should have
|
100 |
-
relative length 1.0 and others len(waveform) / max_length.
|
101 |
-
Used for ignoring padding.
|
102 |
-
|
103 |
-
Returns
|
104 |
-
-------
|
105 |
-
list
|
106 |
-
Each waveform in the batch transcribed.
|
107 |
-
tensor
|
108 |
-
Each predicted token id.
|
109 |
-
"""
|
110 |
-
with torch.no_grad():
|
111 |
-
wav_lens = wav_lens.to(self.device)
|
112 |
-
encoder_out = self.encode_batch(wavs, wav_lens)
|
113 |
-
predicted_tokens, scores = self.mods.decoder(encoder_out, wav_lens)
|
114 |
-
predicted_words = self.tokenizer.batch_decode(
|
115 |
-
predicted_tokens, skip_special_tokens=True)
|
116 |
-
if self.hparams.normalized_transcripts:
|
117 |
-
predicted_words = [
|
118 |
-
self.tokenizer._normalize(text).split(" ")
|
119 |
-
for text in predicted_words
|
120 |
-
]
|
121 |
-
|
122 |
-
|
123 |
-
return predicted_words, predicted_tokens
|
124 |
-
|
125 |
-
def forward(self, wavs, wav_lens):
|
126 |
-
"""Runs full transcription - note: no gradients through decoding"""
|
127 |
-
return self.transcribe_batch(wavs, wav_lens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|