poonehmousavi commited on
Commit
1fe29cd
1 Parent(s): c0583ea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  language:
3
- - ar
4
  thumbnail: null
5
  pipeline_tag: automatic-speech-recognition
6
  tags:
@@ -16,31 +16,31 @@ metrics:
16
  - wer
17
  - cer
18
  model-index:
19
- - name: asr-whisper-medium-commonvoice-ar
20
  results:
21
  - task:
22
  name: Automatic Speech Recognition
23
  type: automatic-speech-recognition
24
  dataset:
25
- name: CommonVoice 10.0 (Arabic)
26
  type: mozilla-foundation/common_voice_14_0
27
- config: ar
28
  split: test
29
  args:
30
- language: ar
31
  metrics:
32
  - name: Test WER
33
  type: wer
34
- value: '14.82'
35
  ---
36
 
37
  <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=medium" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
38
  <br/><br/>
39
 
40
- # whisper medium fine-tuned on CommonVoice-14.0 Arabic
41
 
42
  This repository provides all the necessary tools to perform automatic speech
43
- recognition from an end-to-end whisper model fine-tuned on CommonVoice (Arabic Language) within
44
  SpeechBrain. For a better experience, we encourage you to learn more about
45
  [SpeechBrain](https://speechbrain.github.io).
46
 
@@ -48,7 +48,7 @@ The performance of the model is the following:
48
 
49
  | Release | Test CER | Test WER | GPUs |
50
  |:-------------:|:--------------:|:--------------:| :--------:|
51
- | 1-08-23 | 4.95 | 14.82 | 1xV100 32GB |
52
 
53
  ## Pipeline description
54
 
@@ -72,14 +72,14 @@ pip install speechbrain transformers
72
  Please notice that we encourage you to read our tutorials and learn more about
73
  [SpeechBrain](https://speechbrain.github.io).
74
 
75
- ### Transcribing your own audio files (in Arabic)
76
 
77
  ```python
78
 
79
  from speechbrain.pretrained import WhisperASR
80
 
81
- asr_model = WhisperASR.from_hparams(source="speechbrain/asr-whisper-medium-commonvoice-ar", savedir="pretrained_models/asr-whisper-medium-commonvoice-ar")
82
- asr_model.transcribe_file("speechbrain/asr-whisper-lmedium-commonvoice-ar/example-ar.mp3")
83
 
84
 
85
  ```
@@ -103,7 +103,7 @@ pip install -e .
103
  3. Run Training:
104
  ```bash
105
  cd recipes/CommonVoice/ASR/transformer/
106
- python train_with_whisper.py hparams/train_ar_hf_whisper.yaml --data_folder=your_data_folder
107
  ```
108
 
109
  You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/11PKCsyIE703mmDv6n6n_UnD0bUgMPbg_?usp=share_link).
 
1
  ---
2
  language:
3
+ - fa
4
  thumbnail: null
5
  pipeline_tag: automatic-speech-recognition
6
  tags:
 
16
  - wer
17
  - cer
18
  model-index:
19
+ - name: asr-whisper-medium-commonvoice-fa
20
  results:
21
  - task:
22
  name: Automatic Speech Recognition
23
  type: automatic-speech-recognition
24
  dataset:
25
+ name: CommonVoice 10.0 (Farsi)
26
  type: mozilla-foundation/common_voice_14_0
27
+ config: fa
28
  split: test
29
  args:
30
+ language: fa
31
  metrics:
32
  - name: Test WER
33
  type: wer
34
+ value: '29.01'
35
  ---
36
 
37
  <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=medium" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
38
  <br/><br/>
39
 
40
+ # whisper medium fine-tuned on CommonVoice-14.0 Farsi
41
 
42
  This repository provides all the necessary tools to perform automatic speech
43
+ recognition from an end-to-end whisper model fine-tuned on CommonVoice (Fasri Language) within
44
  SpeechBrain. For a better experience, we encourage you to learn more about
45
  [SpeechBrain](https://speechbrain.github.io).
46
 
 
48
 
49
  | Release | Test CER | Test WER | GPUs |
50
  |:-------------:|:--------------:|:--------------:| :--------:|
51
+ | 1-08-23 | 8.58 | 29.01 | 1xV100 32GB |
52
 
53
  ## Pipeline description
54
 
 
72
  Please notice that we encourage you to read our tutorials and learn more about
73
  [SpeechBrain](https://speechbrain.github.io).
74
 
75
+ ### Transcribing your own audio files (in Farsi)
76
 
77
  ```python
78
 
79
  from speechbrain.pretrained import WhisperASR
80
 
81
+ asr_model = WhisperASR.from_hparams(source="speechbrain/asr-whisper-medium-commonvoice-fa", savedir="pretrained_models/asr-whisper-medium-commonvoice-fa")
82
+ asr_model.transcribe_file("speechbrain/asr-whisper-lmedium-commonvoice-fa/example-fa.mp3")
83
 
84
 
85
  ```
 
103
  3. Run Training:
104
  ```bash
105
  cd recipes/CommonVoice/ASR/transformer/
106
+ python train_with_whisper.py hparams/train_fa_hf_whisper.yaml --data_folder=your_data_folder
107
  ```
108
 
109
  You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/11PKCsyIE703mmDv6n6n_UnD0bUgMPbg_?usp=share_link).