Titouan
commited on
Commit
•
c89c07f
1
Parent(s):
d95b3dc
push our wav2vec2 modelgit add *!'
Browse files- README.md +105 -0
- hyperparams.yaml +40 -0
- latent_encoder.ckpt +3 -0
- latent_extractor.ckpt +3 -0
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: "en"
|
3 |
+
thumbnail:
|
4 |
+
tags:
|
5 |
+
- pretraining
|
6 |
+
- CTC
|
7 |
+
- pytorch
|
8 |
+
- speechbrain
|
9 |
+
- speech
|
10 |
+
license: "apache-2.0"
|
11 |
+
datasets:
|
12 |
+
- commonvoice
|
13 |
+
---
|
14 |
+
|
15 |
+
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
16 |
+
<br/><br/>
|
17 |
+
|
18 |
+
# wav2vec 2.0 base model pretrained on librispeech 960h
|
19 |
+
|
20 |
+
This HuggingFace repository provides all the necessary tools to extract wav2vec2
|
21 |
+
embeddings from a pretrained model. For a better experience, we encourage you to learn more about
|
22 |
+
[SpeechBrain](https://speechbrain.github.io). The wav2vec2 model has entirely been
|
23 |
+
pretrained with SpeechBrain (not with fairseq or HuggingFace).
|
24 |
+
|
25 |
+
The performance of the model is the following:
|
26 |
+
|
27 |
+
| Release | Test WER | GPUs |
|
28 |
+
|:-------------:|:--------------:|:--------------:| :--------:|
|
29 |
+
| 22-09-22 | 7.X | 1xV100 32GB |
|
30 |
+
|
31 |
+
## Pipeline description
|
32 |
+
|
33 |
+
This w2v2 system is composed of 2 different but linked blocks:
|
34 |
+
- A convolutional backend to extract features from the raw waveform.
|
35 |
+
- A latent encoder made of a transformer network.
|
36 |
+
The obtained embeddings are the output of the transformer after going through each
|
37 |
+
block.
|
38 |
+
|
39 |
+
## Install SpeechBrain
|
40 |
+
|
41 |
+
First of all, please install SpeechBrain with the following command:
|
42 |
+
|
43 |
+
```
|
44 |
+
pip install speechbrain
|
45 |
+
```
|
46 |
+
|
47 |
+
Please notice that we encourage you to read our tutorials and learn more about
|
48 |
+
[SpeechBrain](https://speechbrain.github.io).
|
49 |
+
|
50 |
+
### Extracting embeddings for your own audio files
|
51 |
+
|
52 |
+
```python
|
53 |
+
from speechbrain.pretrained import WaveformEncoder
|
54 |
+
|
55 |
+
ssl_model = WaveformEncoder.from_hparams(source="speechbrain/ssl-wav2vec2-base-librispeech", savedir="speechbrain/ssl-wav2vec2-base-librispeech")
|
56 |
+
ssl_model.transcribe_file("example-fr.wav")
|
57 |
+
|
58 |
+
```
|
59 |
+
### Inference on GPU
|
60 |
+
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
61 |
+
|
62 |
+
### Training
|
63 |
+
The model was trained with SpeechBrain.
|
64 |
+
To train it from scratch follow these steps:
|
65 |
+
1. Clone SpeechBrain:
|
66 |
+
```bash
|
67 |
+
git clone https://github.com/speechbrain/speechbrain/
|
68 |
+
```
|
69 |
+
2. Install it:
|
70 |
+
```bash
|
71 |
+
cd speechbrain
|
72 |
+
pip install -r requirements.txt
|
73 |
+
pip install -e .
|
74 |
+
```
|
75 |
+
|
76 |
+
3. Run Training:
|
77 |
+
```bash
|
78 |
+
cd recipes/LibriSpeech/self-supervised-learning/wav2vec2
|
79 |
+
python train_sb_wav2vec2.py hparams/wav2vec2_base.yaml --data_folder=your_data_folder
|
80 |
+
```
|
81 |
+
|
82 |
+
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1eXA6HQtiKfgrPejvvoKvRRfTEvOI3BQt?usp=sharing).
|
83 |
+
|
84 |
+
### Limitations
|
85 |
+
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
86 |
+
|
87 |
+
#### Referencing SpeechBrain
|
88 |
+
|
89 |
+
```
|
90 |
+
@misc{SB2021,
|
91 |
+
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
|
92 |
+
title = {SpeechBrain},
|
93 |
+
year = {2021},
|
94 |
+
publisher = {GitHub},
|
95 |
+
journal = {GitHub repository},
|
96 |
+
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
|
97 |
+
}
|
98 |
+
```
|
99 |
+
|
100 |
+
#### About SpeechBrain
|
101 |
+
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
|
102 |
+
|
103 |
+
Website: https://speechbrain.github.io/
|
104 |
+
|
105 |
+
GitHub: https://github.com/speechbrain/speechbrain
|
hyperparams.yaml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ################################
|
2 |
+
# Model: wav2vec2
|
3 |
+
# Authors: Rudolf A. Braun 2022, Titouan Parcollet 2022
|
4 |
+
# ################################
|
5 |
+
|
6 |
+
sample_rate: 16000
|
7 |
+
|
8 |
+
# standard parameters for the BASE model
|
9 |
+
latent_extractor: !new:speechbrain.lobes.models.wav2vec.W2VLatentExtractor
|
10 |
+
out_channels: [512, 512, 512, 512, 512, 512, 512]
|
11 |
+
|
12 |
+
# standard parameters for the BASE model
|
13 |
+
latent_encoder: !new:speechbrain.lobes.models.transformer.Transformer.TransformerEncoder
|
14 |
+
d_model: 768
|
15 |
+
num_layers: 12
|
16 |
+
nhead: 8
|
17 |
+
d_ffn: 3072
|
18 |
+
dropout: 0.1
|
19 |
+
layerdrop_prob: 0.0
|
20 |
+
normalize_before: True
|
21 |
+
activation: !name:torch.nn.GELU
|
22 |
+
|
23 |
+
# standard parameters for the BASE model
|
24 |
+
encoder_wrapper: !new:speechbrain.lobes.models.wav2vec.EncoderWrapper
|
25 |
+
in_dim: 512
|
26 |
+
embedding_dim: 768
|
27 |
+
latent_encoder: !ref <latent_encoder>
|
28 |
+
dropout_encoder_input: 0.1
|
29 |
+
|
30 |
+
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
|
31 |
+
latent_extractor: !ref <latent_extractor>
|
32 |
+
encoder_wrapper: !ref <encoder_wrapper>
|
33 |
+
|
34 |
+
modules:
|
35 |
+
encoder: !ref <encoder>
|
36 |
+
|
37 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
38 |
+
loadables:
|
39 |
+
latent_encoder: !ref <encoder_wrapper>
|
40 |
+
latent_extractor: !ref <latent_extractor>
|
latent_encoder.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51e99c06d6669d41563e023b747d6187f87ca786a2007d83a3a74feea1e884f2
|
3 |
+
size 349543637
|
latent_extractor.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2542aee415c988a0452322e1278f0ac045c5bcb294b54cf6a4ff7c0491bbdc7
|
3 |
+
size 18939616
|