Upload log/log-decode-2022-04-08-22-02-12
Browse files
log/log-decode-2022-04-08-22-02-12
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-04-08 22:02:12,850 INFO [decode.py:583] Decoding started
|
2 |
+
2022-04-08 22:02:12,851 INFO [decode.py:584] {'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'env_info': {'k2-version': '1.14', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '6833270cb228aba7bf9681fccd41e2b52f7d984c', 'k2-git-date': 'Wed Mar 16 11:16:05 2022', 'lhotse-version': '1.0.0.dev+git.d917411.clean', 'torch-cuda-available': True, 'torch-cuda-version': '11.1', 'python-version': '3.7', 'icefall-git-branch': 'gigaspeech_recipe', 'icefall-git-sha1': 'c3993a5-dirty', 'icefall-git-date': 'Mon Mar 21 13:49:39 2022', 'icefall-path': '/userhome/user/guanbo/icefall_decode', 'k2-path': '/opt/conda/lib/python3.7/site-packages/k2-1.14.dev20220408+cuda11.1.torch1.10.0-py3.7-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/userhome/user/guanbo/lhotse/lhotse/__init__.py', 'hostname': 'd7b02ab00b70c011ec0a3ee069db84328338-chenx8564-0', 'IP address': '10.9.150.18'}, 'epoch': 18, 'avg': 6, 'method': 'attention-decoder', 'num_paths': 1000, 'nbest_scale': 0.5, 'exp_dir': PosixPath('conformer_ctc/exp_500_8_2'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 20, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 1, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'subset': 'XL', 'lazy_load': True, 'small_dev': False}
|
3 |
+
2022-04-08 22:02:13,611 INFO [lexicon.py:176] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
4 |
+
2022-04-08 22:02:13,897 INFO [decode.py:594] device: cuda:0
|
5 |
+
2022-04-08 22:02:19,463 INFO [decode.py:656] Loading pre-compiled G_4_gram.pt
|
6 |
+
2022-04-08 22:02:23,064 INFO [decode.py:692] averaging ['conformer_ctc/exp_500_8_2/epoch-13.pt', 'conformer_ctc/exp_500_8_2/epoch-14.pt', 'conformer_ctc/exp_500_8_2/epoch-15.pt', 'conformer_ctc/exp_500_8_2/epoch-16.pt', 'conformer_ctc/exp_500_8_2/epoch-17.pt', 'conformer_ctc/exp_500_8_2/epoch-18.pt']
|
7 |
+
2022-04-08 22:04:17,302 INFO [decode.py:699] Number of model parameters: 109226120
|
8 |
+
2022-04-08 22:04:17,303 INFO [asr_datamodule.py:372] About to get dev cuts
|
9 |
+
2022-04-08 22:04:21,114 INFO [decode.py:497] batch 0/?, cuts processed until now is 3
|
10 |
+
2022-04-08 22:06:56,367 INFO [decode.py:497] batch 100/?, cuts processed until now is 243
|
11 |
+
2022-04-08 22:09:33,967 INFO [decode.py:497] batch 200/?, cuts processed until now is 464
|
12 |
+
2022-04-08 22:12:05,730 INFO [decode.py:497] batch 300/?, cuts processed until now is 665
|
13 |
+
2022-04-08 22:13:23,989 INFO [decode.py:736] Caught exception:
|
14 |
+
CUDA out of memory. Tried to allocate 4.93 GiB (GPU 0; 31.75 GiB total capacity; 24.54 GiB already allocated; 3.87 GiB free; 26.53 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
15 |
+
|
16 |
+
2022-04-08 22:13:23,989 INFO [decode.py:743] num_arcs before pruning: 333034
|
17 |
+
2022-04-08 22:13:23,989 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
18 |
+
2022-04-08 22:13:24,010 INFO [decode.py:757] num_arcs after pruning: 7258
|
19 |
+
2022-04-08 22:14:38,171 INFO [decode.py:497] batch 400/?, cuts processed until now is 891
|
20 |
+
2022-04-08 22:17:05,640 INFO [decode.py:497] batch 500/?, cuts processed until now is 1098
|
21 |
+
2022-04-08 22:19:29,901 INFO [decode.py:497] batch 600/?, cuts processed until now is 1363
|
22 |
+
2022-04-08 22:20:05,953 INFO [decode.py:736] Caught exception:
|
23 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 7.07 GiB free; 23.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
24 |
+
|
25 |
+
2022-04-08 22:20:05,954 INFO [decode.py:743] num_arcs before pruning: 514392
|
26 |
+
2022-04-08 22:20:05,954 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
27 |
+
2022-04-08 22:20:05,966 INFO [decode.py:757] num_arcs after pruning: 13888
|
28 |
+
2022-04-08 22:22:02,765 INFO [decode.py:497] batch 700/?, cuts processed until now is 1626
|
29 |
+
2022-04-08 22:24:05,393 INFO [decode.py:736] Caught exception:
|
30 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.24 GiB already allocated; 7.07 GiB free; 23.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
31 |
+
|
32 |
+
2022-04-08 22:24:05,393 INFO [decode.py:743] num_arcs before pruning: 164808
|
33 |
+
2022-04-08 22:24:05,393 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
34 |
+
2022-04-08 22:24:05,404 INFO [decode.py:757] num_arcs after pruning: 8771
|
35 |
+
2022-04-08 22:24:40,652 INFO [decode.py:497] batch 800/?, cuts processed until now is 1870
|
36 |
+
2022-04-08 22:25:03,574 INFO [decode.py:736] Caught exception:
|
37 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.28 GiB already allocated; 7.07 GiB free; 23.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
38 |
+
|
39 |
+
2022-04-08 22:25:03,575 INFO [decode.py:743] num_arcs before pruning: 267824
|
40 |
+
2022-04-08 22:25:03,575 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
41 |
+
2022-04-08 22:25:03,582 INFO [decode.py:757] num_arcs after pruning: 9250
|
42 |
+
2022-04-08 22:27:25,872 INFO [decode.py:497] batch 900/?, cuts processed until now is 2134
|
43 |
+
2022-04-08 22:29:45,824 INFO [decode.py:736] Caught exception:
|
44 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.45 GiB already allocated; 7.06 GiB free; 23.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
45 |
+
|
46 |
+
2022-04-08 22:29:45,825 INFO [decode.py:743] num_arcs before pruning: 236799
|
47 |
+
2022-04-08 22:29:45,825 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
48 |
+
2022-04-08 22:29:45,837 INFO [decode.py:757] num_arcs after pruning: 7885
|
49 |
+
2022-04-08 22:30:03,747 INFO [decode.py:497] batch 1000/?, cuts processed until now is 2380
|
50 |
+
2022-04-08 22:30:44,532 INFO [decode.py:736] Caught exception:
|
51 |
+
|
52 |
+
Some bad things happened. Please read the above error messages and stack
|
53 |
+
trace. If you are using Python, the following command may be helpful:
|
54 |
+
|
55 |
+
gdb --args python /path/to/your/code.py
|
56 |
+
|
57 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
58 |
+
a debug version of k2.).
|
59 |
+
|
60 |
+
If you are unable to fix it, please open an issue at:
|
61 |
+
|
62 |
+
https://github.com/k2-fsa/k2/issues/new
|
63 |
+
|
64 |
+
|
65 |
+
2022-04-08 22:30:44,532 INFO [decode.py:743] num_arcs before pruning: 632546
|
66 |
+
2022-04-08 22:30:44,533 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
67 |
+
2022-04-08 22:30:44,585 INFO [decode.py:757] num_arcs after pruning: 10602
|
68 |
+
2022-04-08 22:32:41,978 INFO [decode.py:497] batch 1100/?, cuts processed until now is 2624
|
69 |
+
2022-04-08 22:34:54,199 INFO [decode.py:736] Caught exception:
|
70 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.67 GiB already allocated; 5.68 GiB free; 24.72 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
71 |
+
|
72 |
+
2022-04-08 22:34:54,200 INFO [decode.py:743] num_arcs before pruning: 227558
|
73 |
+
2022-04-08 22:34:54,200 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
74 |
+
2022-04-08 22:34:54,218 INFO [decode.py:757] num_arcs after pruning: 8505
|
75 |
+
2022-04-08 22:35:25,806 INFO [decode.py:497] batch 1200/?, cuts processed until now is 2889
|
76 |
+
2022-04-08 22:38:28,827 INFO [decode.py:497] batch 1300/?, cuts processed until now is 3182
|
77 |
+
2022-04-08 22:39:35,318 INFO [decode.py:736] Caught exception:
|
78 |
+
CUDA out of memory. Tried to allocate 2.65 GiB (GPU 0; 31.75 GiB total capacity; 27.28 GiB already allocated; 1.20 GiB free; 29.19 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
79 |
+
|
80 |
+
2022-04-08 22:39:35,318 INFO [decode.py:743] num_arcs before pruning: 348294
|
81 |
+
2022-04-08 22:39:35,318 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
82 |
+
2022-04-08 22:39:35,324 INFO [decode.py:757] num_arcs after pruning: 4422
|
83 |
+
2022-04-08 22:41:48,886 INFO [decode.py:497] batch 1400/?, cuts processed until now is 3491
|
84 |
+
2022-04-08 22:42:03,583 INFO [decode.py:736] Caught exception:
|
85 |
+
CUDA out of memory. Tried to allocate 4.53 GiB (GPU 0; 31.75 GiB total capacity; 24.43 GiB already allocated; 1.20 GiB free; 29.19 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
86 |
+
|
87 |
+
2022-04-08 22:42:03,584 INFO [decode.py:743] num_arcs before pruning: 446338
|
88 |
+
2022-04-08 22:42:03,584 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
89 |
+
2022-04-08 22:42:03,592 INFO [decode.py:757] num_arcs after pruning: 13422
|
90 |
+
2022-04-08 22:44:41,081 INFO [decode.py:497] batch 1500/?, cuts processed until now is 3738
|
91 |
+
2022-04-08 22:44:48,819 INFO [decode.py:736] Caught exception:
|
92 |
+
CUDA out of memory. Tried to allocate 1.94 GiB (GPU 0; 31.75 GiB total capacity; 29.06 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
93 |
+
|
94 |
+
2022-04-08 22:44:48,820 INFO [decode.py:743] num_arcs before pruning: 263598
|
95 |
+
2022-04-08 22:44:48,820 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
96 |
+
2022-04-08 22:44:48,833 INFO [decode.py:757] num_arcs after pruning: 7847
|
97 |
+
2022-04-08 22:47:10,728 INFO [decode.py:497] batch 1600/?, cuts processed until now is 3970
|
98 |
+
2022-04-08 22:47:52,235 INFO [decode.py:736] Caught exception:
|
99 |
+
CUDA out of memory. Tried to allocate 5.20 GiB (GPU 0; 31.75 GiB total capacity; 24.71 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
100 |
+
|
101 |
+
2022-04-08 22:47:52,236 INFO [decode.py:743] num_arcs before pruning: 317009
|
102 |
+
2022-04-08 22:47:52,236 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
103 |
+
2022-04-08 22:47:52,252 INFO [decode.py:757] num_arcs after pruning: 9354
|
104 |
+
2022-04-08 22:49:32,370 INFO [decode.py:736] Caught exception:
|
105 |
+
CUDA out of memory. Tried to allocate 4.55 GiB (GPU 0; 31.75 GiB total capacity; 24.05 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
106 |
+
|
107 |
+
2022-04-08 22:49:32,371 INFO [decode.py:743] num_arcs before pruning: 136624
|
108 |
+
2022-04-08 22:49:32,371 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
109 |
+
2022-04-08 22:49:32,402 INFO [decode.py:757] num_arcs after pruning: 5456
|
110 |
+
2022-04-08 22:49:36,398 INFO [decode.py:497] batch 1700/?, cuts processed until now is 4192
|
111 |
+
2022-04-08 22:50:50,382 INFO [decode.py:736] Caught exception:
|
112 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.56 GiB already allocated; 2.10 GiB free; 28.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
113 |
+
|
114 |
+
2022-04-08 22:50:50,383 INFO [decode.py:743] num_arcs before pruning: 303893
|
115 |
+
2022-04-08 22:50:50,383 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
116 |
+
2022-04-08 22:50:50,400 INFO [decode.py:757] num_arcs after pruning: 9312
|
117 |
+
2022-04-08 22:52:09,335 INFO [decode.py:497] batch 1800/?, cuts processed until now is 4416
|
118 |
+
2022-04-08 22:52:51,744 INFO [decode.py:736] Caught exception:
|
119 |
+
CUDA out of memory. Tried to allocate 5.02 GiB (GPU 0; 31.75 GiB total capacity; 26.25 GiB already allocated; 2.10 GiB free; 28.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
120 |
+
|
121 |
+
2022-04-08 22:52:51,745 INFO [decode.py:743] num_arcs before pruning: 379292
|
122 |
+
2022-04-08 22:52:51,745 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
123 |
+
2022-04-08 22:52:51,751 INFO [decode.py:757] num_arcs after pruning: 14317
|
124 |
+
2022-04-08 22:54:33,478 INFO [decode.py:497] batch 1900/?, cuts processed until now is 4619
|
125 |
+
2022-04-08 22:56:34,371 INFO [decode.py:736] Caught exception:
|
126 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.32 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
127 |
+
|
128 |
+
2022-04-08 22:56:34,372 INFO [decode.py:743] num_arcs before pruning: 294097
|
129 |
+
2022-04-08 22:56:34,372 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
130 |
+
2022-04-08 22:56:34,389 INFO [decode.py:757] num_arcs after pruning: 5895
|
131 |
+
2022-04-08 22:56:47,967 INFO [decode.py:497] batch 2000/?, cuts processed until now is 4816
|
132 |
+
2022-04-08 22:58:06,236 INFO [decode.py:736] Caught exception:
|
133 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.41 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
134 |
+
|
135 |
+
2022-04-08 22:58:06,236 INFO [decode.py:743] num_arcs before pruning: 253855
|
136 |
+
2022-04-08 22:58:06,236 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
137 |
+
2022-04-08 22:58:06,253 INFO [decode.py:757] num_arcs after pruning: 9191
|
138 |
+
2022-04-08 22:58:17,534 INFO [decode.py:736] Caught exception:
|
139 |
+
CUDA out of memory. Tried to allocate 2.17 GiB (GPU 0; 31.75 GiB total capacity; 26.06 GiB already allocated; 1.56 GiB free; 28.83 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
140 |
+
|
141 |
+
2022-04-08 22:58:17,535 INFO [decode.py:743] num_arcs before pruning: 242689
|
142 |
+
2022-04-08 22:58:17,535 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
143 |
+
2022-04-08 22:58:17,549 INFO [decode.py:757] num_arcs after pruning: 4733
|
144 |
+
2022-04-08 22:58:32,154 INFO [decode.py:736] Caught exception:
|
145 |
+
CUDA out of memory. Tried to allocate 2.38 GiB (GPU 0; 31.75 GiB total capacity; 26.65 GiB already allocated; 1.57 GiB free; 28.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
146 |
+
|
147 |
+
2022-04-08 22:58:32,155 INFO [decode.py:743] num_arcs before pruning: 288302
|
148 |
+
2022-04-08 22:58:32,155 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
149 |
+
2022-04-08 22:58:32,164 INFO [decode.py:757] num_arcs after pruning: 5472
|
150 |
+
2022-04-08 22:59:15,988 INFO [decode.py:497] batch 2100/?, cuts processed until now is 4981
|
151 |
+
2022-04-08 23:00:31,937 INFO [decode.py:736] Caught exception:
|
152 |
+
|
153 |
+
Some bad things happened. Please read the above error messages and stack
|
154 |
+
trace. If you are using Python, the following command may be helpful:
|
155 |
+
|
156 |
+
gdb --args python /path/to/your/code.py
|
157 |
+
|
158 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
159 |
+
a debug version of k2.).
|
160 |
+
|
161 |
+
If you are unable to fix it, please open an issue at:
|
162 |
+
|
163 |
+
https://github.com/k2-fsa/k2/issues/new
|
164 |
+
|
165 |
+
|
166 |
+
2022-04-08 23:00:31,937 INFO [decode.py:743] num_arcs before pruning: 745182
|
167 |
+
2022-04-08 23:00:31,937 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
168 |
+
2022-04-08 23:00:31,989 INFO [decode.py:757] num_arcs after pruning: 13933
|
169 |
+
2022-04-08 23:01:49,408 INFO [decode.py:497] batch 2200/?, cuts processed until now is 5132
|
170 |
+
2022-04-08 23:04:08,911 INFO [decode.py:497] batch 2300/?, cuts processed until now is 5273
|
171 |
+
2022-04-08 23:06:50,854 INFO [decode.py:497] batch 2400/?, cuts processed until now is 5388
|
172 |
+
2022-04-08 23:06:53,493 INFO [decode.py:736] Caught exception:
|
173 |
+
|
174 |
+
Some bad things happened. Please read the above error messages and stack
|
175 |
+
trace. If you are using Python, the following command may be helpful:
|
176 |
+
|
177 |
+
gdb --args python /path/to/your/code.py
|
178 |
+
|
179 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
180 |
+
a debug version of k2.).
|
181 |
+
|
182 |
+
If you are unable to fix it, please open an issue at:
|
183 |
+
|
184 |
+
https://github.com/k2-fsa/k2/issues/new
|
185 |
+
|
186 |
+
|
187 |
+
2022-04-08 23:06:53,493 INFO [decode.py:743] num_arcs before pruning: 203946
|
188 |
+
2022-04-08 23:06:53,493 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
189 |
+
2022-04-08 23:06:53,545 INFO [decode.py:757] num_arcs after pruning: 7172
|
190 |
+
2022-04-08 23:09:08,764 INFO [decode.py:497] batch 2500/?, cuts processed until now is 5488
|
191 |
+
2022-04-08 23:10:26,345 INFO [decode.py:841] Caught exception:
|
192 |
+
CUDA out of memory. Tried to allocate 5.79 GiB (GPU 0; 31.75 GiB total capacity; 24.31 GiB already allocated; 1.58 GiB free; 28.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
193 |
+
|
194 |
+
2022-04-08 23:10:26,346 INFO [decode.py:843] num_paths before decreasing: 1000
|
195 |
+
2022-04-08 23:10:26,346 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
196 |
+
2022-04-08 23:10:26,346 INFO [decode.py:858] num_paths after decreasing: 500
|
197 |
+
2022-04-08 23:11:31,973 INFO [decode.py:497] batch 2600/?, cuts processed until now is 5588
|
198 |
+
2022-04-08 23:13:41,208 INFO [decode.py:497] batch 2700/?, cuts processed until now is 5688
|
199 |
+
2022-04-08 23:20:49,158 INFO [decode.py:567]
|
200 |
+
For dev, WER of different settings are:
|
201 |
+
ngram_lm_scale_0.6_attention_scale_1.5 10.46 best for dev
|
202 |
+
ngram_lm_scale_0.6_attention_scale_1.7 10.46
|
203 |
+
ngram_lm_scale_0.5_attention_scale_0.9 10.47
|
204 |
+
ngram_lm_scale_0.5_attention_scale_1.0 10.47
|
205 |
+
ngram_lm_scale_0.5_attention_scale_1.1 10.47
|
206 |
+
ngram_lm_scale_0.5_attention_scale_1.2 10.47
|
207 |
+
ngram_lm_scale_0.5_attention_scale_1.3 10.47
|
208 |
+
ngram_lm_scale_0.5_attention_scale_1.5 10.47
|
209 |
+
ngram_lm_scale_0.5_attention_scale_1.7 10.47
|
210 |
+
ngram_lm_scale_0.6_attention_scale_1.3 10.47
|
211 |
+
ngram_lm_scale_0.6_attention_scale_1.9 10.47
|
212 |
+
ngram_lm_scale_0.6_attention_scale_2.0 10.47
|
213 |
+
ngram_lm_scale_0.6_attention_scale_2.1 10.47
|
214 |
+
ngram_lm_scale_0.7_attention_scale_1.9 10.47
|
215 |
+
ngram_lm_scale_0.7_attention_scale_2.0 10.47
|
216 |
+
ngram_lm_scale_0.7_attention_scale_2.1 10.47
|
217 |
+
ngram_lm_scale_0.7_attention_scale_2.2 10.47
|
218 |
+
ngram_lm_scale_0.5_attention_scale_1.9 10.48
|
219 |
+
ngram_lm_scale_0.6_attention_scale_1.1 10.48
|
220 |
+
ngram_lm_scale_0.6_attention_scale_1.2 10.48
|
221 |
+
ngram_lm_scale_0.6_attention_scale_2.2 10.48
|
222 |
+
ngram_lm_scale_0.6_attention_scale_2.3 10.48
|
223 |
+
ngram_lm_scale_0.7_attention_scale_1.5 10.48
|
224 |
+
ngram_lm_scale_0.7_attention_scale_1.7 10.48
|
225 |
+
ngram_lm_scale_0.7_attention_scale_2.3 10.48
|
226 |
+
ngram_lm_scale_0.7_attention_scale_2.5 10.48
|
227 |
+
ngram_lm_scale_0.9_attention_scale_4.0 10.48
|
228 |
+
ngram_lm_scale_0.3_attention_scale_1.1 10.49
|
229 |
+
ngram_lm_scale_0.5_attention_scale_0.6 10.49
|
230 |
+
ngram_lm_scale_0.5_attention_scale_0.7 10.49
|
231 |
+
ngram_lm_scale_0.5_attention_scale_2.0 10.49
|
232 |
+
ngram_lm_scale_0.5_attention_scale_2.1 10.49
|
233 |
+
ngram_lm_scale_0.5_attention_scale_2.5 10.49
|
234 |
+
ngram_lm_scale_0.5_attention_scale_3.0 10.49
|
235 |
+
ngram_lm_scale_0.6_attention_scale_1.0 10.49
|
236 |
+
ngram_lm_scale_0.6_attention_scale_2.5 10.49
|
237 |
+
ngram_lm_scale_0.6_attention_scale_3.0 10.49
|
238 |
+
ngram_lm_scale_0.7_attention_scale_1.3 10.49
|
239 |
+
ngram_lm_scale_0.7_attention_scale_3.0 10.49
|
240 |
+
ngram_lm_scale_0.7_attention_scale_4.0 10.49
|
241 |
+
ngram_lm_scale_0.9_attention_scale_3.0 10.49
|
242 |
+
ngram_lm_scale_0.9_attention_scale_5.0 10.49
|
243 |
+
ngram_lm_scale_1.0_attention_scale_4.0 10.49
|
244 |
+
ngram_lm_scale_1.0_attention_scale_5.0 10.49
|
245 |
+
ngram_lm_scale_1.1_attention_scale_4.0 10.49
|
246 |
+
ngram_lm_scale_1.1_attention_scale_5.0 10.49
|
247 |
+
ngram_lm_scale_1.2_attention_scale_4.0 10.49
|
248 |
+
ngram_lm_scale_1.2_attention_scale_5.0 10.49
|
249 |
+
ngram_lm_scale_1.3_attention_scale_5.0 10.49
|
250 |
+
ngram_lm_scale_1.5_attention_scale_5.0 10.49
|
251 |
+
ngram_lm_scale_0.3_attention_scale_0.7 10.5
|
252 |
+
ngram_lm_scale_0.3_attention_scale_0.9 10.5
|
253 |
+
ngram_lm_scale_0.3_attention_scale_1.0 10.5
|
254 |
+
ngram_lm_scale_0.3_attention_scale_1.2 10.5
|
255 |
+
ngram_lm_scale_0.3_attention_scale_1.3 10.5
|
256 |
+
ngram_lm_scale_0.3_attention_scale_1.5 10.5
|
257 |
+
ngram_lm_scale_0.5_attention_scale_2.2 10.5
|
258 |
+
ngram_lm_scale_0.5_attention_scale_2.3 10.5
|
259 |
+
ngram_lm_scale_0.6_attention_scale_0.7 10.5
|
260 |
+
ngram_lm_scale_0.6_attention_scale_0.9 10.5
|
261 |
+
ngram_lm_scale_0.7_attention_scale_1.0 10.5
|
262 |
+
ngram_lm_scale_0.7_attention_scale_1.1 10.5
|
263 |
+
ngram_lm_scale_0.7_attention_scale_5.0 10.5
|
264 |
+
ngram_lm_scale_0.9_attention_scale_2.1 10.5
|
265 |
+
ngram_lm_scale_1.0_attention_scale_3.0 10.5
|
266 |
+
ngram_lm_scale_1.3_attention_scale_4.0 10.5
|
267 |
+
ngram_lm_scale_1.5_attention_scale_4.0 10.5
|
268 |
+
ngram_lm_scale_0.3_attention_scale_1.7 10.51
|
269 |
+
ngram_lm_scale_0.3_attention_scale_1.9 10.51
|
270 |
+
ngram_lm_scale_0.3_attention_scale_2.0 10.51
|
271 |
+
ngram_lm_scale_0.3_attention_scale_2.1 10.51
|
272 |
+
ngram_lm_scale_0.3_attention_scale_2.2 10.51
|
273 |
+
ngram_lm_scale_0.3_attention_scale_2.3 10.51
|
274 |
+
ngram_lm_scale_0.3_attention_scale_2.5 10.51
|
275 |
+
ngram_lm_scale_0.3_attention_scale_3.0 10.51
|
276 |
+
ngram_lm_scale_0.3_attention_scale_4.0 10.51
|
277 |
+
ngram_lm_scale_0.5_attention_scale_0.5 10.51
|
278 |
+
ngram_lm_scale_0.5_attention_scale_4.0 10.51
|
279 |
+
ngram_lm_scale_0.5_attention_scale_5.0 10.51
|
280 |
+
ngram_lm_scale_0.6_attention_scale_4.0 10.51
|
281 |
+
ngram_lm_scale_0.6_attention_scale_5.0 10.51
|
282 |
+
ngram_lm_scale_0.7_attention_scale_1.2 10.51
|
283 |
+
ngram_lm_scale_0.9_attention_scale_2.0 10.51
|
284 |
+
ngram_lm_scale_0.9_attention_scale_2.2 10.51
|
285 |
+
ngram_lm_scale_0.9_attention_scale_2.3 10.51
|
286 |
+
ngram_lm_scale_0.9_attention_scale_2.5 10.51
|
287 |
+
ngram_lm_scale_1.0_attention_scale_2.2 10.51
|
288 |
+
ngram_lm_scale_1.0_attention_scale_2.3 10.51
|
289 |
+
ngram_lm_scale_1.0_attention_scale_2.5 10.51
|
290 |
+
ngram_lm_scale_1.1_attention_scale_2.5 10.51
|
291 |
+
ngram_lm_scale_1.2_attention_scale_3.0 10.51
|
292 |
+
ngram_lm_scale_1.7_attention_scale_5.0 10.51
|
293 |
+
ngram_lm_scale_0.05_attention_scale_2.5 10.52
|
294 |
+
ngram_lm_scale_0.05_attention_scale_3.0 10.52
|
295 |
+
ngram_lm_scale_0.08_attention_scale_2.5 10.52
|
296 |
+
ngram_lm_scale_0.08_attention_scale_4.0 10.52
|
297 |
+
ngram_lm_scale_0.08_attention_scale_5.0 10.52
|
298 |
+
ngram_lm_scale_0.1_attention_scale_2.5 10.52
|
299 |
+
ngram_lm_scale_0.1_attention_scale_3.0 10.52
|
300 |
+
ngram_lm_scale_0.1_attention_scale_4.0 10.52
|
301 |
+
ngram_lm_scale_0.1_attention_scale_5.0 10.52
|
302 |
+
ngram_lm_scale_0.3_attention_scale_0.5 10.52
|
303 |
+
ngram_lm_scale_0.3_attention_scale_0.6 10.52
|
304 |
+
ngram_lm_scale_0.3_attention_scale_5.0 10.52
|
305 |
+
ngram_lm_scale_0.6_attention_scale_0.6 10.52
|
306 |
+
ngram_lm_scale_0.7_attention_scale_0.9 10.52
|
307 |
+
ngram_lm_scale_0.9_attention_scale_1.7 10.52
|
308 |
+
ngram_lm_scale_0.9_attention_scale_1.9 10.52
|
309 |
+
ngram_lm_scale_1.0_attention_scale_2.0 10.52
|
310 |
+
ngram_lm_scale_1.0_attention_scale_2.1 10.52
|
311 |
+
ngram_lm_scale_1.1_attention_scale_2.3 10.52
|
312 |
+
ngram_lm_scale_1.1_attention_scale_3.0 10.52
|
313 |
+
ngram_lm_scale_1.9_attention_scale_5.0 10.52
|
314 |
+
ngram_lm_scale_0.01_attention_scale_2.5 10.53
|
315 |
+
ngram_lm_scale_0.01_attention_scale_3.0 10.53
|
316 |
+
ngram_lm_scale_0.01_attention_scale_4.0 10.53
|
317 |
+
ngram_lm_scale_0.01_attention_scale_5.0 10.53
|
318 |
+
ngram_lm_scale_0.05_attention_scale_1.9 10.53
|
319 |
+
ngram_lm_scale_0.05_attention_scale_2.1 10.53
|
320 |
+
ngram_lm_scale_0.05_attention_scale_2.3 10.53
|
321 |
+
ngram_lm_scale_0.05_attention_scale_4.0 10.53
|
322 |
+
ngram_lm_scale_0.05_attention_scale_5.0 10.53
|
323 |
+
ngram_lm_scale_0.08_attention_scale_1.9 10.53
|
324 |
+
ngram_lm_scale_0.08_attention_scale_2.1 10.53
|
325 |
+
ngram_lm_scale_0.08_attention_scale_2.2 10.53
|
326 |
+
ngram_lm_scale_0.08_attention_scale_2.3 10.53
|
327 |
+
ngram_lm_scale_0.08_attention_scale_3.0 10.53
|
328 |
+
ngram_lm_scale_0.1_attention_scale_2.2 10.53
|
329 |
+
ngram_lm_scale_0.1_attention_scale_2.3 10.53
|
330 |
+
ngram_lm_scale_0.3_attention_scale_0.3 10.53
|
331 |
+
ngram_lm_scale_0.9_attention_scale_1.5 10.53
|
332 |
+
ngram_lm_scale_1.0_attention_scale_1.9 10.53
|
333 |
+
ngram_lm_scale_1.1_attention_scale_2.1 10.53
|
334 |
+
ngram_lm_scale_1.1_attention_scale_2.2 10.53
|
335 |
+
ngram_lm_scale_1.2_attention_scale_2.5 10.53
|
336 |
+
ngram_lm_scale_1.3_attention_scale_3.0 10.53
|
337 |
+
ngram_lm_scale_1.7_attention_scale_4.0 10.53
|
338 |
+
ngram_lm_scale_2.0_attention_scale_5.0 10.53
|
339 |
+
ngram_lm_scale_0.01_attention_scale_2.2 10.54
|
340 |
+
ngram_lm_scale_0.01_attention_scale_2.3 10.54
|
341 |
+
ngram_lm_scale_0.05_attention_scale_1.7 10.54
|
342 |
+
ngram_lm_scale_0.05_attention_scale_2.0 10.54
|
343 |
+
ngram_lm_scale_0.05_attention_scale_2.2 10.54
|
344 |
+
ngram_lm_scale_0.08_attention_scale_1.2 10.54
|
345 |
+
ngram_lm_scale_0.08_attention_scale_1.3 10.54
|
346 |
+
ngram_lm_scale_0.08_attention_scale_1.7 10.54
|
347 |
+
ngram_lm_scale_0.08_attention_scale_2.0 10.54
|
348 |
+
ngram_lm_scale_0.1_attention_scale_1.5 10.54
|
349 |
+
ngram_lm_scale_0.1_attention_scale_1.7 10.54
|
350 |
+
ngram_lm_scale_0.1_attention_scale_1.9 10.54
|
351 |
+
ngram_lm_scale_0.1_attention_scale_2.0 10.54
|
352 |
+
ngram_lm_scale_0.1_attention_scale_2.1 10.54
|
353 |
+
ngram_lm_scale_0.9_attention_scale_1.2 10.54
|
354 |
+
ngram_lm_scale_1.0_attention_scale_1.7 10.54
|
355 |
+
ngram_lm_scale_1.2_attention_scale_2.3 10.54
|
356 |
+
ngram_lm_scale_1.3_attention_scale_2.3 10.54
|
357 |
+
ngram_lm_scale_1.5_attention_scale_3.0 10.54
|
358 |
+
ngram_lm_scale_0.01_attention_scale_1.9 10.55
|
359 |
+
ngram_lm_scale_0.01_attention_scale_2.0 10.55
|
360 |
+
ngram_lm_scale_0.01_attention_scale_2.1 10.55
|
361 |
+
ngram_lm_scale_0.05_attention_scale_1.2 10.55
|
362 |
+
ngram_lm_scale_0.05_attention_scale_1.3 10.55
|
363 |
+
ngram_lm_scale_0.08_attention_scale_1.1 10.55
|
364 |
+
ngram_lm_scale_0.08_attention_scale_1.5 10.55
|
365 |
+
ngram_lm_scale_0.1_attention_scale_1.1 10.55
|
366 |
+
ngram_lm_scale_0.1_attention_scale_1.2 10.55
|
367 |
+
ngram_lm_scale_0.1_attention_scale_1.3 10.55
|
368 |
+
ngram_lm_scale_0.6_attention_scale_0.5 10.55
|
369 |
+
ngram_lm_scale_0.7_attention_scale_0.7 10.55
|
370 |
+
ngram_lm_scale_0.9_attention_scale_1.3 10.55
|
371 |
+
ngram_lm_scale_1.0_attention_scale_1.5 10.55
|
372 |
+
ngram_lm_scale_1.1_attention_scale_2.0 10.55
|
373 |
+
ngram_lm_scale_1.2_attention_scale_2.0 10.55
|
374 |
+
ngram_lm_scale_1.2_attention_scale_2.1 10.55
|
375 |
+
ngram_lm_scale_1.2_attention_scale_2.2 10.55
|
376 |
+
ngram_lm_scale_1.3_attention_scale_2.2 10.55
|
377 |
+
ngram_lm_scale_1.3_attention_scale_2.5 10.55
|
378 |
+
ngram_lm_scale_2.1_attention_scale_5.0 10.55
|
379 |
+
ngram_lm_scale_0.01_attention_scale_1.1 10.56
|
380 |
+
ngram_lm_scale_0.01_attention_scale_1.3 10.56
|
381 |
+
ngram_lm_scale_0.01_attention_scale_1.7 10.56
|
382 |
+
ngram_lm_scale_0.05_attention_scale_1.1 10.56
|
383 |
+
ngram_lm_scale_0.05_attention_scale_1.5 10.56
|
384 |
+
ngram_lm_scale_0.08_attention_scale_1.0 10.56
|
385 |
+
ngram_lm_scale_0.1_attention_scale_1.0 10.56
|
386 |
+
ngram_lm_scale_0.7_attention_scale_0.6 10.56
|
387 |
+
ngram_lm_scale_0.9_attention_scale_1.1 10.56
|
388 |
+
ngram_lm_scale_1.0_attention_scale_1.3 10.56
|
389 |
+
ngram_lm_scale_1.1_attention_scale_1.7 10.56
|
390 |
+
ngram_lm_scale_1.1_attention_scale_1.9 10.56
|
391 |
+
ngram_lm_scale_1.2_attention_scale_1.9 10.56
|
392 |
+
ngram_lm_scale_1.3_attention_scale_2.0 10.56
|
393 |
+
ngram_lm_scale_1.9_attention_scale_4.0 10.56
|
394 |
+
ngram_lm_scale_2.2_attention_scale_5.0 10.56
|
395 |
+
ngram_lm_scale_0.01_attention_scale_1.2 10.57
|
396 |
+
ngram_lm_scale_0.01_attention_scale_1.5 10.57
|
397 |
+
ngram_lm_scale_0.05_attention_scale_1.0 10.57
|
398 |
+
ngram_lm_scale_0.1_attention_scale_0.5 10.57
|
399 |
+
ngram_lm_scale_0.1_attention_scale_0.7 10.57
|
400 |
+
ngram_lm_scale_0.1_attention_scale_0.9 10.57
|
401 |
+
ngram_lm_scale_0.5_attention_scale_0.3 10.57
|
402 |
+
ngram_lm_scale_0.9_attention_scale_1.0 10.57
|
403 |
+
ngram_lm_scale_1.1_attention_scale_1.5 10.57
|
404 |
+
ngram_lm_scale_1.2_attention_scale_1.7 10.57
|
405 |
+
ngram_lm_scale_1.3_attention_scale_2.1 10.57
|
406 |
+
ngram_lm_scale_0.01_attention_scale_1.0 10.58
|
407 |
+
ngram_lm_scale_0.05_attention_scale_0.9 10.58
|
408 |
+
ngram_lm_scale_0.08_attention_scale_0.7 10.58
|
409 |
+
ngram_lm_scale_0.08_attention_scale_0.9 10.58
|
410 |
+
ngram_lm_scale_0.1_attention_scale_0.6 10.58
|
411 |
+
ngram_lm_scale_0.3_attention_scale_0.1 10.58
|
412 |
+
ngram_lm_scale_0.9_attention_scale_0.9 10.58
|
413 |
+
ngram_lm_scale_1.0_attention_scale_1.2 10.58
|
414 |
+
ngram_lm_scale_1.3_attention_scale_1.9 10.58
|
415 |
+
ngram_lm_scale_1.5_attention_scale_2.5 10.58
|
416 |
+
ngram_lm_scale_2.0_attention_scale_4.0 10.58
|
417 |
+
ngram_lm_scale_0.01_attention_scale_0.9 10.59
|
418 |
+
ngram_lm_scale_0.08_attention_scale_0.5 10.59
|
419 |
+
ngram_lm_scale_0.08_attention_scale_0.6 10.59
|
420 |
+
ngram_lm_scale_0.1_attention_scale_0.3 10.59
|
421 |
+
ngram_lm_scale_0.3_attention_scale_0.08 10.59
|
422 |
+
ngram_lm_scale_0.6_attention_scale_0.3 10.59
|
423 |
+
ngram_lm_scale_0.7_attention_scale_0.5 10.59
|
424 |
+
ngram_lm_scale_1.7_attention_scale_3.0 10.59
|
425 |
+
ngram_lm_scale_2.3_attention_scale_5.0 10.59
|
426 |
+
ngram_lm_scale_0.05_attention_scale_0.6 10.6
|
427 |
+
ngram_lm_scale_0.05_attention_scale_0.7 10.6
|
428 |
+
ngram_lm_scale_0.08_attention_scale_0.3 10.6
|
429 |
+
ngram_lm_scale_0.3_attention_scale_0.05 10.6
|
430 |
+
ngram_lm_scale_1.0_attention_scale_1.1 10.6
|
431 |
+
ngram_lm_scale_1.1_attention_scale_1.3 10.6
|
432 |
+
ngram_lm_scale_1.2_attention_scale_1.5 10.6
|
433 |
+
ngram_lm_scale_1.5_attention_scale_2.3 10.6
|
434 |
+
ngram_lm_scale_0.01_attention_scale_0.7 10.61
|
435 |
+
ngram_lm_scale_1.3_attention_scale_1.7 10.61
|
436 |
+
ngram_lm_scale_0.01_attention_scale_0.6 10.62
|
437 |
+
ngram_lm_scale_0.05_attention_scale_0.3 10.62
|
438 |
+
ngram_lm_scale_0.05_attention_scale_0.5 10.62
|
439 |
+
ngram_lm_scale_0.1_attention_scale_0.1 10.62
|
440 |
+
ngram_lm_scale_2.1_attention_scale_4.0 10.62
|
441 |
+
ngram_lm_scale_0.01_attention_scale_0.5 10.63
|
442 |
+
ngram_lm_scale_1.0_attention_scale_1.0 10.63
|
443 |
+
ngram_lm_scale_1.5_attention_scale_2.2 10.63
|
444 |
+
ngram_lm_scale_2.5_attention_scale_5.0 10.63
|
445 |
+
ngram_lm_scale_0.08_attention_scale_0.1 10.64
|
446 |
+
ngram_lm_scale_0.1_attention_scale_0.08 10.64
|
447 |
+
ngram_lm_scale_0.3_attention_scale_0.01 10.64
|
448 |
+
ngram_lm_scale_1.1_attention_scale_1.2 10.64
|
449 |
+
ngram_lm_scale_0.01_attention_scale_0.3 10.65
|
450 |
+
ngram_lm_scale_0.5_attention_scale_0.1 10.65
|
451 |
+
ngram_lm_scale_0.7_attention_scale_0.3 10.65
|
452 |
+
ngram_lm_scale_1.5_attention_scale_2.1 10.65
|
453 |
+
ngram_lm_scale_0.08_attention_scale_0.08 10.66
|
454 |
+
ngram_lm_scale_0.1_attention_scale_0.05 10.66
|
455 |
+
ngram_lm_scale_0.5_attention_scale_0.08 10.66
|
456 |
+
ngram_lm_scale_0.9_attention_scale_0.7 10.66
|
457 |
+
ngram_lm_scale_2.2_attention_scale_4.0 10.66
|
458 |
+
ngram_lm_scale_0.1_attention_scale_0.01 10.67
|
459 |
+
ngram_lm_scale_1.0_attention_scale_0.9 10.67
|
460 |
+
ngram_lm_scale_1.1_attention_scale_1.1 10.67
|
461 |
+
ngram_lm_scale_1.7_attention_scale_2.5 10.67
|
462 |
+
ngram_lm_scale_0.05_attention_scale_0.1 10.68
|
463 |
+
ngram_lm_scale_0.5_attention_scale_0.05 10.68
|
464 |
+
ngram_lm_scale_1.5_attention_scale_2.0 10.68
|
465 |
+
ngram_lm_scale_0.05_attention_scale_0.08 10.69
|
466 |
+
ngram_lm_scale_0.08_attention_scale_0.05 10.69
|
467 |
+
ngram_lm_scale_1.2_attention_scale_1.3 10.69
|
468 |
+
ngram_lm_scale_1.9_attention_scale_3.0 10.69
|
469 |
+
ngram_lm_scale_0.08_attention_scale_0.01 10.7
|
470 |
+
ngram_lm_scale_0.6_attention_scale_0.1 10.7
|
471 |
+
ngram_lm_scale_1.3_attention_scale_1.5 10.7
|
472 |
+
ngram_lm_scale_2.3_attention_scale_4.0 10.7
|
473 |
+
ngram_lm_scale_0.05_attention_scale_0.05 10.71
|
474 |
+
ngram_lm_scale_0.5_attention_scale_0.01 10.71
|
475 |
+
ngram_lm_scale_0.9_attention_scale_0.6 10.71
|
476 |
+
ngram_lm_scale_1.1_attention_scale_1.0 10.71
|
477 |
+
ngram_lm_scale_1.5_attention_scale_1.9 10.71
|
478 |
+
ngram_lm_scale_0.01_attention_scale_0.1 10.72
|
479 |
+
ngram_lm_scale_0.01_attention_scale_0.08 10.73
|
480 |
+
ngram_lm_scale_0.05_attention_scale_0.01 10.73
|
481 |
+
ngram_lm_scale_0.6_attention_scale_0.08 10.73
|
482 |
+
ngram_lm_scale_1.2_attention_scale_1.2 10.73
|
483 |
+
ngram_lm_scale_0.01_attention_scale_0.05 10.75
|
484 |
+
ngram_lm_scale_0.9_attention_scale_0.5 10.75
|
485 |
+
ngram_lm_scale_1.0_attention_scale_0.7 10.75
|
486 |
+
ngram_lm_scale_1.1_attention_scale_0.9 10.75
|
487 |
+
ngram_lm_scale_1.2_attention_scale_1.1 10.75
|
488 |
+
ngram_lm_scale_1.3_attention_scale_1.3 10.76
|
489 |
+
ngram_lm_scale_1.7_attention_scale_2.3 10.76
|
490 |
+
ngram_lm_scale_2.0_attention_scale_3.0 10.77
|
491 |
+
ngram_lm_scale_0.6_attention_scale_0.05 10.78
|
492 |
+
ngram_lm_scale_0.01_attention_scale_0.01 10.79
|
493 |
+
ngram_lm_scale_1.5_attention_scale_1.7 10.79
|
494 |
+
ngram_lm_scale_1.7_attention_scale_2.2 10.79
|
495 |
+
ngram_lm_scale_1.2_attention_scale_1.0 10.8
|
496 |
+
ngram_lm_scale_1.3_attention_scale_1.2 10.8
|
497 |
+
ngram_lm_scale_2.5_attention_scale_4.0 10.81
|
498 |
+
ngram_lm_scale_1.7_attention_scale_2.1 10.82
|
499 |
+
ngram_lm_scale_1.0_attention_scale_0.6 10.83
|
500 |
+
ngram_lm_scale_2.1_attention_scale_3.0 10.84
|
501 |
+
ngram_lm_scale_0.6_attention_scale_0.01 10.85
|
502 |
+
ngram_lm_scale_1.7_attention_scale_2.0 10.85
|
503 |
+
ngram_lm_scale_1.9_attention_scale_2.5 10.85
|
504 |
+
ngram_lm_scale_3.0_attention_scale_5.0 10.86
|
505 |
+
ngram_lm_scale_1.3_attention_scale_1.1 10.87
|
506 |
+
ngram_lm_scale_0.7_attention_scale_0.1 10.88
|
507 |
+
ngram_lm_scale_1.5_attention_scale_1.5 10.88
|
508 |
+
ngram_lm_scale_1.2_attention_scale_0.9 10.89
|
509 |
+
ngram_lm_scale_1.7_attention_scale_1.9 10.89
|
510 |
+
ngram_lm_scale_2.2_attention_scale_3.0 10.9
|
511 |
+
ngram_lm_scale_1.1_attention_scale_0.7 10.91
|
512 |
+
ngram_lm_scale_1.9_attention_scale_2.3 10.91
|
513 |
+
ngram_lm_scale_2.0_attention_scale_2.5 10.91
|
514 |
+
ngram_lm_scale_0.7_attention_scale_0.08 10.92
|
515 |
+
ngram_lm_scale_0.7_attention_scale_0.05 10.96
|
516 |
+
ngram_lm_scale_1.0_attention_scale_0.5 10.96
|
517 |
+
ngram_lm_scale_1.9_attention_scale_2.2 10.97
|
518 |
+
ngram_lm_scale_2.3_attention_scale_3.0 10.97
|
519 |
+
ngram_lm_scale_1.3_attention_scale_1.0 10.99
|
520 |
+
ngram_lm_scale_1.7_attention_scale_1.7 11.01
|
521 |
+
ngram_lm_scale_2.1_attention_scale_2.5 11.02
|
522 |
+
ngram_lm_scale_0.9_attention_scale_0.3 11.03
|
523 |
+
ngram_lm_scale_1.9_attention_scale_2.1 11.03
|
524 |
+
ngram_lm_scale_0.7_attention_scale_0.01 11.04
|
525 |
+
ngram_lm_scale_1.5_attention_scale_1.3 11.04
|
526 |
+
ngram_lm_scale_2.0_attention_scale_2.3 11.04
|
527 |
+
ngram_lm_scale_1.1_attention_scale_0.6 11.05
|
528 |
+
ngram_lm_scale_1.9_attention_scale_2.0 11.1
|
529 |
+
ngram_lm_scale_2.0_attention_scale_2.2 11.1
|
530 |
+
ngram_lm_scale_1.3_attention_scale_0.9 11.11
|
531 |
+
ngram_lm_scale_1.2_attention_scale_0.7 11.14
|
532 |
+
ngram_lm_scale_1.5_attention_scale_1.2 11.15
|
533 |
+
ngram_lm_scale_2.2_attention_scale_2.5 11.16
|
534 |
+
ngram_lm_scale_2.1_attention_scale_2.3 11.17
|
535 |
+
ngram_lm_scale_3.0_attention_scale_4.0 11.17
|
536 |
+
ngram_lm_scale_1.9_attention_scale_1.9 11.18
|
537 |
+
ngram_lm_scale_2.0_attention_scale_2.1 11.18
|
538 |
+
ngram_lm_scale_1.1_attention_scale_0.5 11.19
|
539 |
+
ngram_lm_scale_2.5_attention_scale_3.0 11.19
|
540 |
+
ngram_lm_scale_1.7_attention_scale_1.5 11.21
|
541 |
+
ngram_lm_scale_2.1_attention_scale_2.2 11.25
|
542 |
+
ngram_lm_scale_1.2_attention_scale_0.6 11.26
|
543 |
+
ngram_lm_scale_1.5_attention_scale_1.1 11.26
|
544 |
+
ngram_lm_scale_2.0_attention_scale_2.0 11.26
|
545 |
+
ngram_lm_scale_1.0_attention_scale_0.3 11.29
|
546 |
+
ngram_lm_scale_2.3_attention_scale_2.5 11.3
|
547 |
+
ngram_lm_scale_2.2_attention_scale_2.3 11.31
|
548 |
+
ngram_lm_scale_2.1_attention_scale_2.1 11.32
|
549 |
+
ngram_lm_scale_2.0_attention_scale_1.9 11.34
|
550 |
+
ngram_lm_scale_1.3_attention_scale_0.7 11.36
|
551 |
+
ngram_lm_scale_1.9_attention_scale_1.7 11.37
|
552 |
+
ngram_lm_scale_1.5_attention_scale_1.0 11.4
|
553 |
+
ngram_lm_scale_2.2_attention_scale_2.2 11.4
|
554 |
+
ngram_lm_scale_2.1_attention_scale_2.0 11.41
|
555 |
+
ngram_lm_scale_0.9_attention_scale_0.1 11.42
|
556 |
+
ngram_lm_scale_1.7_attention_scale_1.3 11.44
|
557 |
+
ngram_lm_scale_1.2_attention_scale_0.5 11.45
|
558 |
+
ngram_lm_scale_0.9_attention_scale_0.08 11.47
|
559 |
+
ngram_lm_scale_2.3_attention_scale_2.3 11.48
|
560 |
+
ngram_lm_scale_2.2_attention_scale_2.1 11.51
|
561 |
+
ngram_lm_scale_2.1_attention_scale_1.9 11.54
|
562 |
+
ngram_lm_scale_1.3_attention_scale_0.6 11.55
|
563 |
+
ngram_lm_scale_1.5_attention_scale_0.9 11.56
|
564 |
+
ngram_lm_scale_0.9_attention_scale_0.05 11.57
|
565 |
+
ngram_lm_scale_2.0_attention_scale_1.7 11.57
|
566 |
+
ngram_lm_scale_2.3_attention_scale_2.2 11.58
|
567 |
+
ngram_lm_scale_1.1_attention_scale_0.3 11.59
|
568 |
+
ngram_lm_scale_1.7_attention_scale_1.2 11.59
|
569 |
+
ngram_lm_scale_1.9_attention_scale_1.5 11.63
|
570 |
+
ngram_lm_scale_2.2_attention_scale_2.0 11.63
|
571 |
+
ngram_lm_scale_2.5_attention_scale_2.5 11.63
|
572 |
+
ngram_lm_scale_4.0_attention_scale_5.0 11.67
|
573 |
+
ngram_lm_scale_2.3_attention_scale_2.1 11.7
|
574 |
+
ngram_lm_scale_0.9_attention_scale_0.01 11.71
|
575 |
+
ngram_lm_scale_2.2_attention_scale_1.9 11.73
|
576 |
+
ngram_lm_scale_1.3_attention_scale_0.5 11.76
|
577 |
+
ngram_lm_scale_1.7_attention_scale_1.1 11.76
|
578 |
+
ngram_lm_scale_1.0_attention_scale_0.1 11.78
|
579 |
+
ngram_lm_scale_2.1_attention_scale_1.7 11.8
|
580 |
+
ngram_lm_scale_2.3_attention_scale_2.0 11.8
|
581 |
+
ngram_lm_scale_2.5_attention_scale_2.3 11.83
|
582 |
+
ngram_lm_scale_2.0_attention_scale_1.5 11.86
|
583 |
+
ngram_lm_scale_1.0_attention_scale_0.08 11.89
|
584 |
+
ngram_lm_scale_1.9_attention_scale_1.3 11.93
|
585 |
+
ngram_lm_scale_3.0_attention_scale_3.0 11.94
|
586 |
+
ngram_lm_scale_1.2_attention_scale_0.3 11.95
|
587 |
+
ngram_lm_scale_1.7_attention_scale_1.0 11.95
|
588 |
+
ngram_lm_scale_2.3_attention_scale_1.9 11.95
|
589 |
+
ngram_lm_scale_2.5_attention_scale_2.2 11.96
|
590 |
+
ngram_lm_scale_1.5_attention_scale_0.7 11.98
|
591 |
+
ngram_lm_scale_1.0_attention_scale_0.05 12.0
|
592 |
+
ngram_lm_scale_2.2_attention_scale_1.7 12.02
|
593 |
+
ngram_lm_scale_2.1_attention_scale_1.5 12.09
|
594 |
+
ngram_lm_scale_2.5_attention_scale_2.1 12.09
|
595 |
+
ngram_lm_scale_1.9_attention_scale_1.2 12.12
|
596 |
+
ngram_lm_scale_1.7_attention_scale_0.9 12.16
|
597 |
+
ngram_lm_scale_1.0_attention_scale_0.01 12.19
|
598 |
+
ngram_lm_scale_2.0_attention_scale_1.3 12.2
|
599 |
+
ngram_lm_scale_2.5_attention_scale_2.0 12.22
|
600 |
+
ngram_lm_scale_1.5_attention_scale_0.6 12.24
|
601 |
+
ngram_lm_scale_2.3_attention_scale_1.7 12.24
|
602 |
+
ngram_lm_scale_1.1_attention_scale_0.1 12.27
|
603 |
+
ngram_lm_scale_1.9_attention_scale_1.1 12.3
|
604 |
+
ngram_lm_scale_4.0_attention_scale_4.0 12.31
|
605 |
+
ngram_lm_scale_2.2_attention_scale_1.5 12.32
|
606 |
+
ngram_lm_scale_2.5_attention_scale_1.9 12.35
|
607 |
+
ngram_lm_scale_1.1_attention_scale_0.08 12.36
|
608 |
+
ngram_lm_scale_2.0_attention_scale_1.2 12.37
|
609 |
+
ngram_lm_scale_1.3_attention_scale_0.3 12.4
|
610 |
+
ngram_lm_scale_2.1_attention_scale_1.3 12.43
|
611 |
+
ngram_lm_scale_3.0_attention_scale_2.5 12.46
|
612 |
+
ngram_lm_scale_1.1_attention_scale_0.05 12.51
|
613 |
+
ngram_lm_scale_1.9_attention_scale_1.0 12.52
|
614 |
+
ngram_lm_scale_2.3_attention_scale_1.5 12.53
|
615 |
+
ngram_lm_scale_1.5_attention_scale_0.5 12.54
|
616 |
+
ngram_lm_scale_2.0_attention_scale_1.1 12.58
|
617 |
+
ngram_lm_scale_5.0_attention_scale_5.0 12.62
|
618 |
+
ngram_lm_scale_2.1_attention_scale_1.2 12.63
|
619 |
+
ngram_lm_scale_2.5_attention_scale_1.7 12.64
|
620 |
+
ngram_lm_scale_1.7_attention_scale_0.7 12.68
|
621 |
+
ngram_lm_scale_2.2_attention_scale_1.3 12.68
|
622 |
+
ngram_lm_scale_1.1_attention_scale_0.01 12.72
|
623 |
+
ngram_lm_scale_3.0_attention_scale_2.3 12.72
|
624 |
+
ngram_lm_scale_1.9_attention_scale_0.9 12.78
|
625 |
+
ngram_lm_scale_1.2_attention_scale_0.1 12.79
|
626 |
+
ngram_lm_scale_2.0_attention_scale_1.0 12.82
|
627 |
+
ngram_lm_scale_2.1_attention_scale_1.1 12.86
|
628 |
+
ngram_lm_scale_3.0_attention_scale_2.2 12.87
|
629 |
+
ngram_lm_scale_1.2_attention_scale_0.08 12.88
|
630 |
+
ngram_lm_scale_2.2_attention_scale_1.2 12.92
|
631 |
+
ngram_lm_scale_2.3_attention_scale_1.3 12.97
|
632 |
+
ngram_lm_scale_1.7_attention_scale_0.6 12.98
|
633 |
+
ngram_lm_scale_3.0_attention_scale_2.1 13.03
|
634 |
+
ngram_lm_scale_2.5_attention_scale_1.5 13.04
|
635 |
+
ngram_lm_scale_1.2_attention_scale_0.05 13.05
|
636 |
+
ngram_lm_scale_2.0_attention_scale_0.9 13.11
|
637 |
+
ngram_lm_scale_2.1_attention_scale_1.0 13.17
|
638 |
+
ngram_lm_scale_2.2_attention_scale_1.1 13.2
|
639 |
+
ngram_lm_scale_3.0_attention_scale_2.0 13.2
|
640 |
+
ngram_lm_scale_2.3_attention_scale_1.2 13.24
|
641 |
+
ngram_lm_scale_1.2_attention_scale_0.01 13.27
|
642 |
+
ngram_lm_scale_1.3_attention_scale_0.1 13.3
|
643 |
+
ngram_lm_scale_1.5_attention_scale_0.3 13.32
|
644 |
+
ngram_lm_scale_1.7_attention_scale_0.5 13.33
|
645 |
+
ngram_lm_scale_1.3_attention_scale_0.08 13.4
|
646 |
+
ngram_lm_scale_4.0_attention_scale_3.0 13.41
|
647 |
+
ngram_lm_scale_1.9_attention_scale_0.7 13.42
|
648 |
+
ngram_lm_scale_3.0_attention_scale_1.9 13.42
|
649 |
+
ngram_lm_scale_2.1_attention_scale_0.9 13.45
|
650 |
+
ngram_lm_scale_2.2_attention_scale_1.0 13.46
|
651 |
+
ngram_lm_scale_2.3_attention_scale_1.1 13.47
|
652 |
+
ngram_lm_scale_2.5_attention_scale_1.3 13.53
|
653 |
+
ngram_lm_scale_1.3_attention_scale_0.05 13.56
|
654 |
+
ngram_lm_scale_5.0_attention_scale_4.0 13.57
|
655 |
+
ngram_lm_scale_2.0_attention_scale_0.7 13.73
|
656 |
+
ngram_lm_scale_2.2_attention_scale_0.9 13.74
|
657 |
+
ngram_lm_scale_1.9_attention_scale_0.6 13.75
|
658 |
+
ngram_lm_scale_2.3_attention_scale_1.0 13.75
|
659 |
+
ngram_lm_scale_2.5_attention_scale_1.2 13.78
|
660 |
+
ngram_lm_scale_1.3_attention_scale_0.01 13.81
|
661 |
+
ngram_lm_scale_3.0_attention_scale_1.7 13.84
|
662 |
+
ngram_lm_scale_2.5_attention_scale_1.1 14.05
|
663 |
+
ngram_lm_scale_2.1_attention_scale_0.7 14.07
|
664 |
+
ngram_lm_scale_2.3_attention_scale_0.9 14.07
|
665 |
+
ngram_lm_scale_2.0_attention_scale_0.6 14.1
|
666 |
+
ngram_lm_scale_1.9_attention_scale_0.5 14.14
|
667 |
+
ngram_lm_scale_1.7_attention_scale_0.3 14.18
|
668 |
+
ngram_lm_scale_4.0_attention_scale_2.5 14.2
|
669 |
+
ngram_lm_scale_3.0_attention_scale_1.5 14.28
|
670 |
+
ngram_lm_scale_1.5_attention_scale_0.1 14.3
|
671 |
+
ngram_lm_scale_2.5_attention_scale_1.0 14.35
|
672 |
+
ngram_lm_scale_1.5_attention_scale_0.08 14.41
|
673 |
+
ngram_lm_scale_2.2_attention_scale_0.7 14.42
|
674 |
+
ngram_lm_scale_2.1_attention_scale_0.6 14.47
|
675 |
+
ngram_lm_scale_2.0_attention_scale_0.5 14.51
|
676 |
+
ngram_lm_scale_4.0_attention_scale_2.3 14.56
|
677 |
+
ngram_lm_scale_1.5_attention_scale_0.05 14.57
|
678 |
+
ngram_lm_scale_2.5_attention_scale_0.9 14.66
|
679 |
+
ngram_lm_scale_2.3_attention_scale_0.7 14.72
|
680 |
+
ngram_lm_scale_4.0_attention_scale_2.2 14.75
|
681 |
+
ngram_lm_scale_2.2_attention_scale_0.6 14.76
|
682 |
+
ngram_lm_scale_3.0_attention_scale_1.3 14.76
|
683 |
+
ngram_lm_scale_2.1_attention_scale_0.5 14.8
|
684 |
+
ngram_lm_scale_1.5_attention_scale_0.01 14.82
|
685 |
+
ngram_lm_scale_5.0_attention_scale_3.0 14.84
|
686 |
+
ngram_lm_scale_4.0_attention_scale_2.1 14.9
|
687 |
+
ngram_lm_scale_1.9_attention_scale_0.3 14.93
|
688 |
+
ngram_lm_scale_3.0_attention_scale_1.2 14.98
|
689 |
+
ngram_lm_scale_2.3_attention_scale_0.6 15.04
|
690 |
+
ngram_lm_scale_4.0_attention_scale_2.0 15.07
|
691 |
+
ngram_lm_scale_2.2_attention_scale_0.5 15.13
|
692 |
+
ngram_lm_scale_1.7_attention_scale_0.1 15.2
|
693 |
+
ngram_lm_scale_3.0_attention_scale_1.1 15.24
|
694 |
+
ngram_lm_scale_4.0_attention_scale_1.9 15.25
|
695 |
+
ngram_lm_scale_2.5_attention_scale_0.7 15.26
|
696 |
+
ngram_lm_scale_1.7_attention_scale_0.08 15.3
|
697 |
+
ngram_lm_scale_2.0_attention_scale_0.3 15.31
|
698 |
+
ngram_lm_scale_2.3_attention_scale_0.5 15.41
|
699 |
+
ngram_lm_scale_1.7_attention_scale_0.05 15.48
|
700 |
+
ngram_lm_scale_3.0_attention_scale_1.0 15.54
|
701 |
+
ngram_lm_scale_2.5_attention_scale_0.6 15.59
|
702 |
+
ngram_lm_scale_5.0_attention_scale_2.5 15.61
|
703 |
+
ngram_lm_scale_2.1_attention_scale_0.3 15.62
|
704 |
+
ngram_lm_scale_4.0_attention_scale_1.7 15.66
|
705 |
+
ngram_lm_scale_1.7_attention_scale_0.01 15.73
|
706 |
+
ngram_lm_scale_3.0_attention_scale_0.9 15.8
|
707 |
+
ngram_lm_scale_5.0_attention_scale_2.3 15.9
|
708 |
+
ngram_lm_scale_1.9_attention_scale_0.1 15.91
|
709 |
+
ngram_lm_scale_2.2_attention_scale_0.3 15.93
|
710 |
+
ngram_lm_scale_2.5_attention_scale_0.5 15.96
|
711 |
+
ngram_lm_scale_1.9_attention_scale_0.08 16.02
|
712 |
+
ngram_lm_scale_4.0_attention_scale_1.5 16.04
|
713 |
+
ngram_lm_scale_5.0_attention_scale_2.2 16.04
|
714 |
+
ngram_lm_scale_1.9_attention_scale_0.05 16.18
|
715 |
+
ngram_lm_scale_5.0_attention_scale_2.1 16.2
|
716 |
+
ngram_lm_scale_2.3_attention_scale_0.3 16.21
|
717 |
+
ngram_lm_scale_2.0_attention_scale_0.1 16.25
|
718 |
+
ngram_lm_scale_3.0_attention_scale_0.7 16.34
|
719 |
+
ngram_lm_scale_2.0_attention_scale_0.08 16.35
|
720 |
+
ngram_lm_scale_5.0_attention_scale_2.0 16.37
|
721 |
+
ngram_lm_scale_1.9_attention_scale_0.01 16.42
|
722 |
+
ngram_lm_scale_4.0_attention_scale_1.3 16.45
|
723 |
+
ngram_lm_scale_2.0_attention_scale_0.05 16.5
|
724 |
+
ngram_lm_scale_5.0_attention_scale_1.9 16.52
|
725 |
+
ngram_lm_scale_2.1_attention_scale_0.1 16.55
|
726 |
+
ngram_lm_scale_4.0_attention_scale_1.2 16.62
|
727 |
+
ngram_lm_scale_2.1_attention_scale_0.08 16.64
|
728 |
+
ngram_lm_scale_3.0_attention_scale_0.6 16.64
|
729 |
+
ngram_lm_scale_2.5_attention_scale_0.3 16.67
|
730 |
+
ngram_lm_scale_2.0_attention_scale_0.01 16.71
|
731 |
+
ngram_lm_scale_2.1_attention_scale_0.05 16.77
|
732 |
+
ngram_lm_scale_2.2_attention_scale_0.1 16.8
|
733 |
+
ngram_lm_scale_5.0_attention_scale_1.7 16.82
|
734 |
+
ngram_lm_scale_4.0_attention_scale_1.1 16.84
|
735 |
+
ngram_lm_scale_2.2_attention_scale_0.08 16.89
|
736 |
+
ngram_lm_scale_3.0_attention_scale_0.5 16.95
|
737 |
+
ngram_lm_scale_2.1_attention_scale_0.01 16.99
|
738 |
+
ngram_lm_scale_2.2_attention_scale_0.05 17.02
|
739 |
+
ngram_lm_scale_2.3_attention_scale_0.1 17.02
|
740 |
+
ngram_lm_scale_4.0_attention_scale_1.0 17.07
|
741 |
+
ngram_lm_scale_2.3_attention_scale_0.08 17.09
|
742 |
+
ngram_lm_scale_5.0_attention_scale_1.5 17.16
|
743 |
+
ngram_lm_scale_2.2_attention_scale_0.01 17.18
|
744 |
+
ngram_lm_scale_2.3_attention_scale_0.05 17.2
|
745 |
+
ngram_lm_scale_4.0_attention_scale_0.9 17.24
|
746 |
+
ngram_lm_scale_2.3_attention_scale_0.01 17.38
|
747 |
+
ngram_lm_scale_2.5_attention_scale_0.1 17.4
|
748 |
+
ngram_lm_scale_5.0_attention_scale_1.3 17.45
|
749 |
+
ngram_lm_scale_2.5_attention_scale_0.08 17.47
|
750 |
+
ngram_lm_scale_3.0_attention_scale_0.3 17.53
|
751 |
+
ngram_lm_scale_2.5_attention_scale_0.05 17.58
|
752 |
+
ngram_lm_scale_5.0_attention_scale_1.2 17.63
|
753 |
+
ngram_lm_scale_2.5_attention_scale_0.01 17.7
|
754 |
+
ngram_lm_scale_4.0_attention_scale_0.7 17.7
|
755 |
+
ngram_lm_scale_5.0_attention_scale_1.1 17.8
|
756 |
+
ngram_lm_scale_4.0_attention_scale_0.6 17.89
|
757 |
+
ngram_lm_scale_5.0_attention_scale_1.0 17.94
|
758 |
+
ngram_lm_scale_3.0_attention_scale_0.1 18.09
|
759 |
+
ngram_lm_scale_4.0_attention_scale_0.5 18.09
|
760 |
+
ngram_lm_scale_5.0_attention_scale_0.9 18.09
|
761 |
+
ngram_lm_scale_3.0_attention_scale_0.08 18.14
|
762 |
+
ngram_lm_scale_3.0_attention_scale_0.05 18.21
|
763 |
+
ngram_lm_scale_3.0_attention_scale_0.01 18.31
|
764 |
+
ngram_lm_scale_5.0_attention_scale_0.7 18.41
|
765 |
+
ngram_lm_scale_4.0_attention_scale_0.3 18.49
|
766 |
+
ngram_lm_scale_5.0_attention_scale_0.6 18.57
|
767 |
+
ngram_lm_scale_5.0_attention_scale_0.5 18.71
|
768 |
+
ngram_lm_scale_4.0_attention_scale_0.1 18.85
|
769 |
+
ngram_lm_scale_4.0_attention_scale_0.08 18.88
|
770 |
+
ngram_lm_scale_4.0_attention_scale_0.05 18.95
|
771 |
+
ngram_lm_scale_5.0_attention_scale_0.3 19.01
|
772 |
+
ngram_lm_scale_4.0_attention_scale_0.01 19.02
|
773 |
+
ngram_lm_scale_5.0_attention_scale_0.1 19.3
|
774 |
+
ngram_lm_scale_5.0_attention_scale_0.08 19.32
|
775 |
+
ngram_lm_scale_5.0_attention_scale_0.05 19.37
|
776 |
+
ngram_lm_scale_5.0_attention_scale_0.01 19.43
|
777 |
+
|
778 |
+
2022-04-08 23:20:49,165 INFO [decode.py:730] Done!
|