|
from typing import Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
|
|
from transformers.image_processing_utils import ( |
|
BaseImageProcessor, |
|
BatchFeature, |
|
get_size_dict, |
|
) |
|
from transformers.image_transforms import ( |
|
normalize, |
|
rescale, |
|
resize, |
|
to_channel_dimension_format, |
|
) |
|
from transformers.image_utils import ( |
|
IMAGENET_STANDARD_MEAN, |
|
IMAGENET_STANDARD_STD, |
|
ChannelDimension, |
|
ImageInput, |
|
PILImageResampling, |
|
make_list_of_images, |
|
to_numpy_array, |
|
valid_images, |
|
) |
|
from transformers.utils import TensorType |
|
|
|
|
|
class SpiceCNNImageProcessor(BaseImageProcessor): |
|
""" |
|
Constructs a SpiceCNN image processor. |
|
|
|
Args: |
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
Whether to resize the image's (height, width) dimensions to the specified `(size["height"], |
|
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. |
|
size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`): |
|
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` |
|
method. |
|
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): |
|
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the |
|
`preprocess` method. |
|
do_rescale (`bool`, *optional*, defaults to `True`): |
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` |
|
parameter in the `preprocess` method. |
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): |
|
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the |
|
`preprocess` method. |
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` |
|
method. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): |
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of |
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): |
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the |
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
do_resize: bool = True, |
|
size: Optional[Dict[str, int]] = None, |
|
resample: PILImageResampling = PILImageResampling.BILINEAR, |
|
do_rescale: bool = True, |
|
rescale_factor: Union[int, float] = 1 / 255, |
|
do_normalize: bool = True, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
**kwargs, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
size = size if size is not None else {"height": 224, "width": 224} |
|
size = get_size_dict(size) |
|
self.do_resize = do_resize |
|
self.do_rescale = do_rescale |
|
self.do_normalize = do_normalize |
|
self.size = size |
|
self.resample = resample |
|
self.rescale_factor = rescale_factor |
|
self.image_mean = ( |
|
image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN |
|
) |
|
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD |
|
|
|
def resize( |
|
self, |
|
image: np.ndarray, |
|
size: Dict[str, int], |
|
resample: PILImageResampling = PILImageResampling.BILINEAR, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Resize an image to `(size["height"], size["width"])`. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to resize. |
|
size (`Dict[str, int]`): |
|
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. |
|
resample: |
|
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. |
|
data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the output image. If unset, the channel dimension format of the input |
|
image is used. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
|
|
Returns: |
|
`np.ndarray`: The resized image. |
|
""" |
|
size = get_size_dict(size) |
|
if "height" not in size or "width" not in size: |
|
raise ValueError( |
|
f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" |
|
) |
|
return resize( |
|
image, |
|
size=(size["height"], size["width"]), |
|
resample=resample, |
|
data_format=data_format, |
|
**kwargs, |
|
) |
|
|
|
def rescale( |
|
self, |
|
image: np.ndarray, |
|
scale: float, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Rescale an image by a scale factor. image = image * scale. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to rescale. |
|
scale (`float`): |
|
The scaling factor to rescale pixel values by. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the output image. If unset, the channel dimension format of the input |
|
image is used. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
|
|
Returns: |
|
`np.ndarray`: The rescaled image. |
|
""" |
|
return rescale(image, scale=scale, data_format=data_format, **kwargs) |
|
|
|
def normalize( |
|
self, |
|
image: np.ndarray, |
|
mean: Union[float, List[float]], |
|
std: Union[float, List[float]], |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Normalize an image. image = (image - image_mean) / image_std. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to normalize. |
|
mean (`float` or `List[float]`): |
|
Image mean to use for normalization. |
|
std (`float` or `List[float]`): |
|
Image standard deviation to use for normalization. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the output image. If unset, the channel dimension format of the input |
|
image is used. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
|
|
Returns: |
|
`np.ndarray`: The normalized image. |
|
""" |
|
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs) |
|
|
|
def preprocess( |
|
self, |
|
images: ImageInput, |
|
do_resize: Optional[bool] = None, |
|
size: Dict[str, int] = None, |
|
resample: PILImageResampling = None, |
|
do_rescale: Optional[bool] = None, |
|
rescale_factor: Optional[float] = None, |
|
do_normalize: Optional[bool] = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, |
|
**kwargs, |
|
): |
|
""" |
|
Preprocess an image or batch of images. |
|
|
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. |
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
Whether to resize the image. |
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`): |
|
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after |
|
resizing. |
|
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): |
|
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has |
|
an effect if `do_resize` is set to `True`. |
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
Whether to rescale the image values between [0 - 1]. |
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`. |
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
Whether to normalize the image. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean to use if `do_normalize` is set to `True`. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation to use if `do_normalize` is set to `True`. |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
The type of tensors to return. Can be one of: |
|
- Unset: Return a list of `np.ndarray`. |
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. |
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. |
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- Unset: Use the channel dimension format of the input image. |
|
""" |
|
do_resize = do_resize if do_resize is not None else self.do_resize |
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale |
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize |
|
resample = resample if resample is not None else self.resample |
|
rescale_factor = ( |
|
rescale_factor if rescale_factor is not None else self.rescale_factor |
|
) |
|
image_mean = image_mean if image_mean is not None else self.image_mean |
|
image_std = image_std if image_std is not None else self.image_std |
|
|
|
size = size if size is not None else self.size |
|
size_dict = get_size_dict(size) |
|
|
|
images = make_list_of_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
if do_resize and size is None: |
|
raise ValueError("Size must be specified if do_resize is True.") |
|
|
|
if do_rescale and rescale_factor is None: |
|
raise ValueError("Rescale factor must be specified if do_rescale is True.") |
|
|
|
|
|
images = [to_numpy_array(image) for image in images] |
|
|
|
if do_resize: |
|
images = [ |
|
self.resize(image=image, size=size_dict, resample=resample) |
|
for image in images |
|
] |
|
|
|
if do_rescale: |
|
images = [ |
|
self.rescale(image=image, scale=rescale_factor) for image in images |
|
] |
|
|
|
if do_normalize: |
|
images = [ |
|
self.normalize(image=image, mean=image_mean, std=image_std) |
|
for image in images |
|
] |
|
|
|
images = [to_channel_dimension_format(image, data_format) for image in images] |
|
|
|
data = {"pixel_values": images} |
|
return BatchFeature(data=data, tensor_type=return_tensors) |
|
|