File size: 6,684 Bytes
ce91638 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
Output exceeds the size limit. Open the full output data in a text editor table: 2-1137692-1 columns: Entrant,Constructor,Chassis,Engine †,Tyre,Driver,Rounds Q: What were the rounds on the Engine † of the Ferrari 048? A: SELECT Rounds FROM 2-1137692-1 WHERE Engine † = 'ferrari 048' END table: 1-21530474-1 columns: Chassis code,Model no.,Production years,Drivetrain,Transmission,Engine type,Engine code,Region(s) Q: Name the drivetrain for 1ur-fse for usf41 A: SELECT Drivetrain FROM 1-21530474-1 WHERE Engine code = '1UR-FSE' AND Chassis code = 'USF41' END table: 2-14155087-1 columns: Callsign,Area served,Frequency,Band,On-air ID,Purpose Q: What is the Callsign with an Area of tamworth and frequency of 0 88.9? A: SELECT Callsign FROM 2-14155087-1 WHERE Area served = 'tamworth' AND Frequency = '0 88.9' END table: 2-17580726-2 columns: Date,Opponent,Venue,Score,Attendance,Scorers Q: What is the number of people in attendance when Tonbridge Angels is the opponent? ... Q: What were the match points when Bordeaux-Bègles was eliminated from competition? A: SELECT Match points FROM 1-27986200-3 WHERE Eliminated from competition = 'Bordeaux-Bègles' END /home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: /opt/conda did not contain libcudart.so as expected! Searching further paths... warn(msg) The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. The class this function is called from is 'LlamaTokenizer'. ===================================BUG REPORT=================================== Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues ================================================================================ CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so CUDA SETUP: Highest compute capability among GPUs detected: 7.5 CUDA SETUP: Detected CUDA version 113 CUDA SETUP: Loading binary /home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/libbitsandbytes_cuda113.so... True 92 0 count 56355.000000 mean 101.219519 std 21.740325 min 63.000000 25% 87.500000 50% 97.000000 75% 109.000000 max 461.000000 32084 [250/250 3:49:26, Epoch 0/1] Step Training Loss 1 2.748800 2 2.699100 3 2.670200 4 2.600500 5 2.560100 6 2.556800 7 2.498100 8 2.515400 9 2.436100 10 2.411700 11 2.346400 12 2.276300 13 2.238000 14 2.189100 15 2.109200 16 2.058000 17 1.983900 18 1.928600 19 1.824100 20 1.794700 21 1.681200 22 1.598900 23 1.562000 24 1.527200 25 1.518700 26 1.493100 27 1.500500 28 1.464000 29 1.386900 30 1.373400 31 1.362200 32 1.360800 33 1.321000 34 1.310500 35 1.302600 36 1.256100 37 1.252500 38 1.202300 39 1.249100 40 1.188600 41 1.203200 42 1.150000 43 1.182000 44 1.192300 45 1.133100 46 1.119600 47 1.097000 48 1.142100 49 1.117200 50 1.129200 51 1.087300 52 1.098700 53 1.135400 54 1.071700 55 1.087300 56 1.051400 57 1.068300 58 1.092500 59 1.068600 60 1.072800 61 1.074000 62 1.060400 63 1.065800 64 1.075900 65 1.059500 66 1.039600 67 1.051400 68 1.049500 69 1.023800 70 1.071900 71 1.051000 72 1.034700 73 1.041600 74 1.030900 75 1.010800 76 1.019800 77 1.005000 78 1.043800 79 1.009200 80 1.017100 81 1.044600 82 1.022600 83 1.011400 84 0.996600 85 1.029900 86 0.988200 87 1.005600 88 0.986600 89 1.025300 90 1.012500 91 0.988100 92 1.001800 93 0.987100 94 1.017600 95 0.998500 96 0.966600 97 0.983700 98 0.961800 99 0.969000 100 0.989200 101 0.956400 102 0.976000 103 1.000100 104 1.001500 105 0.995900 106 0.989700 107 0.965700 108 0.968400 109 1.019600 110 1.000100 111 0.978500 112 0.978900 113 0.952600 114 0.975400 115 0.989400 116 0.968500 117 0.960100 118 0.979100 119 0.955100 120 0.934800 121 0.943600 122 0.976700 123 0.998700 124 0.930500 125 0.953500 126 0.978000 127 0.967300 128 0.929400 129 0.963100 130 0.961500 131 0.978500 132 0.937200 133 0.953400 134 0.962000 135 0.950700 136 0.925100 137 0.958800 138 0.926200 139 0.930600 140 0.968900 141 0.970400 142 0.927100 143 0.911800 144 0.953200 145 0.907100 146 0.935900 147 0.970600 148 0.920400 149 0.930200 150 0.926700 151 0.913400 152 0.926800 153 0.967200 154 0.939500 155 0.910600 156 0.926400 157 0.935400 158 0.967700 159 0.899000 160 0.916600 161 0.961600 162 0.898200 163 0.944600 164 0.935700 165 0.922500 166 0.897600 167 0.968600 168 0.927400 169 0.910900 170 0.904700 171 0.899800 172 0.896400 173 0.862100 174 0.909100 175 0.903200 176 0.958600 177 0.902500 178 0.894900 179 0.937900 180 0.900700 181 0.922300 182 0.939300 183 0.932600 184 0.913300 185 0.941700 186 0.886300 187 0.918000 188 0.884000 189 0.947400 190 0.894500 191 0.929300 192 0.877300 193 0.894300 194 0.867800 195 0.913500 196 0.908100 197 0.931200 198 0.911000 199 0.941800 200 0.913000 201 0.921800 202 0.921700 203 0.914500 204 0.910500 205 0.906600 206 0.915100 207 0.881600 208 0.884700 209 0.902900 210 0.882600 211 0.891000 212 0.914400 213 0.930400 214 0.891100 215 0.859300 216 0.891800 217 0.873000 218 0.925900 219 0.905700 220 0.921200 221 0.890200 222 0.915800 223 0.887300 224 0.898300 225 0.865600 226 0.873900 227 0.904800 228 0.917900 229 0.923400 230 0.939700 231 0.913400 232 0.873100 233 0.896700 234 0.892100 235 0.902100 236 0.927200 237 0.912900 238 0.872900 239 0.904700 240 0.879600 241 0.879800 242 0.908800 243 0.909800 244 0.838400 245 0.889200 246 0.912900 247 0.879700 248 0.910700 249 0.845400 250 0.882200 /home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None warnings.warn("None of the inputs have requires_grad=True. Gradients will be None") Output exceeds the size limit. Open the full output data in a text editor from model <unk>table: 1-12028543-3 columns: Season,Cup FinalDate,WinningTeam,Score,LosingTeam,Location,Cup Final Attendance Q: Who was the winning team in the 1989 season? A: SELECT WinningTeam FROM 1-12028543-3 WHERE Season = '1989' END END END END expected answer SELECT WinningTeam FROM 1-12028543-3 WHERE Season = '1989' END from model <unk>table: 2-18096431-5 columns: Place,Player,Country,Score,To par Q: What is To par, when Country is "United States", and when Player is "Mark Brooks"? A: 18-1 END expected answer SELECT To par FROM 2-18096431-5 WHERE Country = 'united states' AND Player = 'mark brooks' END ... expected answer SELECT Score FROM 2-17978030-6 WHERE Set 3 = '26–28' END |