sqllama-V0 / res.txt
matt-tries-dl's picture
trained adaptor
4f1cd24
raw
history blame
13.5 kB
Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data.
### Question: How many games does novica veličković have when there's more than 24 rebounds?
### Input: Table 2-16050349-8 has columns Rank (real),Name (text),Team (text),Games (real),Rebounds (real).
### Answer: SELECT COUNT Games FROM 2-16050349-8 WHERE Name = 'novica veličković' AND Rebounds > 24
Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data.
### Question: What is the number of capacity at somerset park?
### Input: Table 1-11206787-5 has columns Team (text),Stadium (text),Capacity (real),Highest (real),Lowest (real),Average (real).
### Answer: SELECT COUNT Capacity FROM 1-11206787-5 WHERE Stadium = 'Somerset Park'
Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data.
### Question: What is the number & name with an Undergoing overhaul, restoration or repairs date?
### Input: Table 2-11913905-6 has columns Number & Name (text),Description (text),Livery (text),Owner(s) (text),Date (text).
### Answer: SELECT Number & Name FROM 2-11913905-6 WHERE Date = 'undergoing overhaul, restoration or repairs'
Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data.
### Question: What year did Orlando have a School/Club team in Clemson?
### Input: Table 2-15621965-7 has columns Player (text),Nationality (text),Position (text),Years in Orlando (text),School/Club Team (text).
### Answer: SELECT Years in Orlando FROM 2-15621965-7 WHERE School/Club Team = 'clemson'
Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data.
### Question: How many Deaths have a Fate of damaged, and a Tonnage (GRT) smaller than 4,917?
### Input: Table 2-18914307-1 has columns Date (text),Ship Name (text),Flag (text),Tonnage ( GRT ) (real),Fate (text),Deaths (real).
### Answer: SELECT COUNT Deaths FROM 2-18914307-1 WHERE Fate = 'damaged' AND Tonnage ( GRT ) < 4,917
{'phase': 1, 'table_id': '1-1000181-1', 'question': 'Tell me what the notes are for South Australia ', 'sql': {'sel': 5, 'conds': [[3, 0, 'SOUTH AUSTRALIA']], 'agg': 0}}
1-1000181-1
['State/territory', 'Text/background colour', 'Format', 'Current slogan', 'Current series', 'Notes']
{'id': '1-1000181-1', 'header': ['State/territory', 'Text/background colour', 'Format', 'Current slogan', 'Current series', 'Notes'], 'types': ['text', 'text', 'text', 'text', 'text', 'text'], 'rows': [['Australian Capital Territory', 'blue/white', 'Yaa·nna', 'ACT · CELEBRATION OF A CENTURY 2013', 'YIL·00A', 'Slogan screenprinted on plate'], ['New South Wales', 'black/yellow', 'aa·nn·aa', 'NEW SOUTH WALES', 'BX·99·HI', 'No slogan on current series'], ['New South Wales', 'black/white', 'aaa·nna', 'NSW', 'CPX·12A', 'Optional white slimline series'], ['Northern Territory', 'ochre/white', 'Ca·nn·aa', 'NT · OUTBACK AUSTRALIA', 'CB·06·ZZ', 'New series began in June 2011'], ['Queensland', 'maroon/white', 'nnn·aaa', 'QUEENSLAND · SUNSHINE STATE', '999·TLG', 'Slogan embossed on plate'], ['South Australia', 'black/white', 'Snnn·aaa', 'SOUTH AUSTRALIA', 'S000·AZD', 'No slogan on current series'], ['Victoria', 'blue/white', 'aaa·nnn', 'VICTORIA - THE PLACE TO BE', 'ZZZ·562', 'Current series will be exhausted this year']], 'name': 'table_1000181_1'}
SELECT col5 FROM table WHERE col3 = SOUTH AUSTRALIA
SELECT Notes FROM table WHERE Current slogan = SOUTH AUSTRALIA
fatal: destination path 'WikiSQL' already exists and is not an empty directory.
data/
data/train.jsonl
data/test.tables.jsonl
data/test.db
data/dev.tables.jsonl
data/dev.db
data/test.jsonl
data/train.tables.jsonl
data/train.db
data/dev.jsonl
/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/transformers/generation/utils.py:1220: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use a generation configuration file (see https://huggingface.co/docs/transformers/main_classes/text_generation)
"You have modified the pretrained model configuration to control generation. This is a"
⁇ hey dude, talk to me.
I'm a 20 year old guy from the UK. I'm a bit of a nerd, I like to read, I like to write, I like to play video games, I like to watch movies, I like to listen
/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: /opt/conda did not contain libcudart.so as expected! Searching further paths...
warn(msg)
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization.
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'.
The class this function is called from is 'LlamaTokenizer'.
===================================BUG REPORT===================================
Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues
================================================================================
CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so
CUDA SETUP: Highest compute capability among GPUs detected: 7.5
CUDA SETUP: Detected CUDA version 113
CUDA SETUP: Loading binary /home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/libbitsandbytes_cuda113.so...
True
[440/440 11:19:07, Epoch 0/1]
Step Training Loss
1 2.517200
2 2.482300
3 2.444100
4 2.456500
5 2.441400
6 2.484600
7 2.424000
8 2.477900
9 2.429700
10 2.436000
11 2.422000
12 2.408800
13 2.402900
14 2.424500
15 2.421800
16 2.424100
17 2.404000
18 2.386900
19 2.414400
20 2.370600
21 2.382500
22 2.350700
23 2.385700
24 2.350400
25 2.354900
26 2.345400
27 2.373000
28 2.343200
29 2.374300
30 2.325000
31 2.352000
32 2.344600
33 2.360000
34 2.347400
35 2.346700
36 2.329000
37 2.314600
38 2.306000
39 2.292600
40 2.333800
41 2.311500
42 2.308300
43 2.287400
44 2.314100
45 2.280400
46 2.261300
47 2.274200
48 2.246900
49 2.257100
50 2.274500
51 2.245500
52 2.250700
53 2.296600
54 2.261000
55 2.223800
56 2.244000
57 2.228500
58 2.229100
59 2.162300
60 2.238000
61 2.246000
62 2.184800
63 2.195000
64 2.199500
65 2.180000
66 2.179800
67 2.149700
68 2.177000
69 2.156600
70 2.193400
71 2.163400
72 2.147400
73 2.134700
74 2.133200
75 2.118000
76 2.139000
77 2.102000
78 2.109100
79 2.099000
80 2.097500
81 2.073200
82 2.055200
83 2.078100
84 2.104800
85 2.061100
86 2.066500
87 2.073500
88 2.010500
89 2.045700
90 2.026700
91 2.046500
92 2.015300
93 2.019100
94 2.008600
95 1.961000
96 1.974300
97 1.991700
98 1.984700
99 1.975900
100 1.963900
101 1.934300
102 1.990400
103 1.914900
104 1.956100
105 1.943400
106 1.931000
107 1.919000
108 1.912800
109 1.920400
110 1.878300
111 1.890800
112 1.881900
113 1.885400
114 1.908400
115 1.871200
116 1.900000
117 1.888000
118 1.875100
119 1.855000
120 1.852100
121 1.851200
122 1.821800
123 1.853000
124 1.854700
125 1.806900
126 1.845300
127 1.797800
128 1.795300
129 1.799500
130 1.853900
131 1.780100
132 1.789400
133 1.776700
134 1.747300
135 1.753700
136 1.761300
137 1.725500
138 1.710800
139 1.733500
140 1.727000
141 1.744300
142 1.728900
143 1.725100
144 1.708000
145 1.709000
146 1.704600
147 1.684600
148 1.676100
149 1.682800
150 1.669900
151 1.636400
152 1.671500
153 1.673200
154 1.644300
155 1.620800
156 1.617500
157 1.647700
158 1.629300
159 1.608800
160 1.633000
161 1.618200
162 1.634300
163 1.588400
164 1.581100
165 1.584500
166 1.594800
167 1.563800
168 1.576900
169 1.546300
170 1.569800
171 1.592300
172 1.537800
173 1.519200
174 1.512100
175 1.581500
176 1.534500
177 1.509400
178 1.521300
179 1.528500
180 1.494300
181 1.495000
182 1.499700
183 1.461300
184 1.469200
185 1.495200
186 1.467400
187 1.437000
188 1.463000
189 1.437900
190 1.467400
191 1.472300
192 1.434000
193 1.411500
194 1.432500
195 1.459800
196 1.431900
197 1.456200
198 1.394800
199 1.422700
200 1.412800
201 1.413800
202 1.380000
203 1.407400
204 1.406200
205 1.396100
206 1.407100
207 1.379600
208 1.360600
209 1.395100
210 1.352500
211 1.358900
212 1.369100
213 1.342600
214 1.358900
215 1.320300
216 1.355700
217 1.315700
218 1.348800
219 1.319800
220 1.336500
221 1.339600
222 1.319500
223 1.319600
224 1.330200
225 1.271700
226 1.317300
227 1.287400
228 1.283300
229 1.280500
230 1.274200
231 1.297000
232 1.266400
233 1.253100
234 1.273100
235 1.293300
236 1.293000
237 1.273500
238 1.253100
239 1.257700
240 1.232500
241 1.233100
242 1.226000
243 1.218400
244 1.222800
245 1.232100
246 1.214800
247 1.205700
248 1.228400
249 1.202600
250 1.207700
251 1.205800
252 1.198400
253 1.207800
254 1.198600
255 1.201700
256 1.195500
257 1.190500
258 1.197100
259 1.165100
260 1.173200
261 1.163400
262 1.191500
263 1.173700
264 1.134400
265 1.165500
266 1.134800
267 1.149500
268 1.173100
269 1.137000
270 1.171200
271 1.120600
272 1.147600
273 1.128300
274 1.150300
275 1.147700
276 1.150200
277 1.106900
278 1.145400
279 1.117300
280 1.121900
281 1.139400
282 1.109100
283 1.142100
284 1.117300
285 1.104200
286 1.134200
287 1.100400
288 1.092100
289 1.120500
290 1.088100
291 1.128600
292 1.105400
293 1.094000
294 1.108900
295 1.073100
296 1.100900
297 1.092400
298 1.090300
299 1.079400
300 1.090300
301 1.086100
302 1.080300
303 1.075600
304 1.075900
305 1.092200
306 1.070600
307 1.068800
308 1.071300
309 1.073900
310 1.055400
311 1.067900
312 1.041000
313 1.048600
314 1.072600
315 1.058800
316 1.039000
317 1.072300
318 1.056600
319 1.035100
320 1.052800
321 1.046700
322 1.073400
323 1.054000
324 1.077100
325 1.035200
326 1.027700
327 1.060000
328 1.048900
329 1.040000
330 1.026900
331 1.049300
332 1.017100
333 0.996200
334 1.006400
335 1.026700
336 1.073700
337 1.039200
338 1.041100
339 1.054300
340 1.013500
341 1.024900
342 1.003300
343 0.993400
344 1.037300
345 1.009300
346 1.030400
347 1.001400
348 1.012100
349 1.027300
350 1.012700
351 1.013400
352 1.004400
353 1.024800
354 0.990700
355 1.048600
356 0.992700
357 0.991800
358 0.985300
359 1.019100
360 1.007300
361 1.025500
362 0.999100
363 0.997900
364 1.013300
365 1.014700
366 1.037700
367 0.992400
368 0.988800
369 0.993900
370 0.999500
371 0.973000
372 0.972200
373 0.989200
374 0.994500
375 0.995800
376 0.992000
377 0.977800
378 0.975700
379 0.973700
380 0.986200
381 1.008000
382 0.954100
383 1.015900
384 1.008200
385 0.974700
386 0.987500
387 0.993700
388 0.999200
389 1.000700
390 0.978600
391 0.956200
392 1.001600
393 0.971300
394 0.965800
395 0.981000
396 0.965400
397 0.974200
398 0.970700
399 0.953500
400 0.979700
401 0.957700
402 0.984600
403 1.015600
404 0.976800
405 0.969100
406 0.974200
407 0.983300
408 0.974300
409 0.980600
410 0.986300
411 0.968100
412 0.980500
413 0.976200
414 0.987300
415 0.971600
416 0.985200
417 0.989800
418 0.972000
419 0.971100
420 0.988800
421 0.965600
422 1.020400
423 0.978000
424 0.987800
425 0.953700
426 0.990400
427 0.982900
428 0.989100
429 0.983800
430 0.981500
431 0.966900
432 0.967300
433 0.999400
434 0.973100
435 0.980500
436 0.995500
437 0.960300
438 0.953700
439 0.993600
440 0.965100
Dataset({
features: ['input_ids', 'attention_mask'],
num_rows: 56355
})
{'input_ids': [0, 13866, 338, 263, 1139, 393, 16612, 263, 848, 2009, 29892, 3300, 2859, 411, 385, 1881, 393, 16612, 263, 3758, 1591, 29889, 29871, 14350, 263, 3758, 2346, 393, 5663, 17180, 278, 848, 29889, 13, 2277, 29937, 894, 29901, 24948, 592, 825, 278, 11486, 526, 363, 4275, 8314, 29871, 13, 2277, 29937, 10567, 29901, 6137, 29871, 29896, 29899, 29896, 29900, 29900, 29900, 29896, 29947, 29896, 29899, 29896, 756, 4341, 4306, 29914, 357, 768, 706, 313, 726, 511, 1626, 29914, 7042, 12384, 313, 726, 511, 5809, 313, 726, 511, 7583, 269, 1188, 273, 313, 726, 511, 7583, 3652, 313, 726, 511, 3664, 267, 313, 726, 467, 259, 13, 2277, 29937, 673, 29901, 5097, 29871, 8695, 3895, 29871, 29896, 29899, 29896, 29900, 29900, 29900, 29896, 29947, 29896, 29899, 29896, 5754, 9626, 269, 1188, 273, 353, 525, 6156, 2692, 29950, 319, 29965, 10810, 1964, 10764, 29915, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}