Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data. | |
### Question: How many games does novica veličković have when there's more than 24 rebounds? | |
### Input: Table 2-16050349-8 has columns Rank (real),Name (text),Team (text),Games (real),Rebounds (real). | |
### Answer: SELECT COUNT Games FROM 2-16050349-8 WHERE Name = 'novica veličković' AND Rebounds > 24 | |
Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data. | |
### Question: What is the number of capacity at somerset park? | |
### Input: Table 1-11206787-5 has columns Team (text),Stadium (text),Capacity (real),Highest (real),Lowest (real),Average (real). | |
### Answer: SELECT COUNT Capacity FROM 1-11206787-5 WHERE Stadium = 'Somerset Park' | |
Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data. | |
### Question: What is the number & name with an Undergoing overhaul, restoration or repairs date? | |
### Input: Table 2-11913905-6 has columns Number & Name (text),Description (text),Livery (text),Owner(s) (text),Date (text). | |
### Answer: SELECT Number & Name FROM 2-11913905-6 WHERE Date = 'undergoing overhaul, restoration or repairs' | |
Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data. | |
### Question: What year did Orlando have a School/Club team in Clemson? | |
### Input: Table 2-15621965-7 has columns Player (text),Nationality (text),Position (text),Years in Orlando (text),School/Club Team (text). | |
### Answer: SELECT Years in Orlando FROM 2-15621965-7 WHERE School/Club Team = 'clemson' | |
Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data. | |
### Question: How many Deaths have a Fate of damaged, and a Tonnage (GRT) smaller than 4,917? | |
### Input: Table 2-18914307-1 has columns Date (text),Ship Name (text),Flag (text),Tonnage ( GRT ) (real),Fate (text),Deaths (real). | |
### Answer: SELECT COUNT Deaths FROM 2-18914307-1 WHERE Fate = 'damaged' AND Tonnage ( GRT ) < 4,917 | |
{'phase': 1, 'table_id': '1-1000181-1', 'question': 'Tell me what the notes are for South Australia ', 'sql': {'sel': 5, 'conds': [[3, 0, 'SOUTH AUSTRALIA']], 'agg': 0}} | |
1-1000181-1 | |
['State/territory', 'Text/background colour', 'Format', 'Current slogan', 'Current series', 'Notes'] | |
{'id': '1-1000181-1', 'header': ['State/territory', 'Text/background colour', 'Format', 'Current slogan', 'Current series', 'Notes'], 'types': ['text', 'text', 'text', 'text', 'text', 'text'], 'rows': [['Australian Capital Territory', 'blue/white', 'Yaa·nna', 'ACT · CELEBRATION OF A CENTURY 2013', 'YIL·00A', 'Slogan screenprinted on plate'], ['New South Wales', 'black/yellow', 'aa·nn·aa', 'NEW SOUTH WALES', 'BX·99·HI', 'No slogan on current series'], ['New South Wales', 'black/white', 'aaa·nna', 'NSW', 'CPX·12A', 'Optional white slimline series'], ['Northern Territory', 'ochre/white', 'Ca·nn·aa', 'NT · OUTBACK AUSTRALIA', 'CB·06·ZZ', 'New series began in June 2011'], ['Queensland', 'maroon/white', 'nnn·aaa', 'QUEENSLAND · SUNSHINE STATE', '999·TLG', 'Slogan embossed on plate'], ['South Australia', 'black/white', 'Snnn·aaa', 'SOUTH AUSTRALIA', 'S000·AZD', 'No slogan on current series'], ['Victoria', 'blue/white', 'aaa·nnn', 'VICTORIA - THE PLACE TO BE', 'ZZZ·562', 'Current series will be exhausted this year']], 'name': 'table_1000181_1'} | |
SELECT col5 FROM table WHERE col3 = SOUTH AUSTRALIA | |
SELECT Notes FROM table WHERE Current slogan = SOUTH AUSTRALIA | |
fatal: destination path 'WikiSQL' already exists and is not an empty directory. | |
data/ | |
data/train.jsonl | |
data/test.tables.jsonl | |
data/test.db | |
data/dev.tables.jsonl | |
data/dev.db | |
data/test.jsonl | |
data/train.tables.jsonl | |
data/train.db | |
data/dev.jsonl | |
/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/transformers/generation/utils.py:1220: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use a generation configuration file (see https://huggingface.co/docs/transformers/main_classes/text_generation) | |
"You have modified the pretrained model configuration to control generation. This is a" | |
⁇ hey dude, talk to me. | |
I'm a 20 year old guy from the UK. I'm a bit of a nerd, I like to read, I like to write, I like to play video games, I like to watch movies, I like to listen | |
/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: /opt/conda did not contain libcudart.so as expected! Searching further paths... | |
warn(msg) | |
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. | |
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. | |
The class this function is called from is 'LlamaTokenizer'. | |
===================================BUG REPORT=================================== | |
Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues | |
================================================================================ | |
CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so | |
CUDA SETUP: Highest compute capability among GPUs detected: 7.5 | |
CUDA SETUP: Detected CUDA version 113 | |
CUDA SETUP: Loading binary /home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/libbitsandbytes_cuda113.so... | |
True | |
[440/440 11:19:07, Epoch 0/1] | |
Step Training Loss | |
1 2.517200 | |
2 2.482300 | |
3 2.444100 | |
4 2.456500 | |
5 2.441400 | |
6 2.484600 | |
7 2.424000 | |
8 2.477900 | |
9 2.429700 | |
10 2.436000 | |
11 2.422000 | |
12 2.408800 | |
13 2.402900 | |
14 2.424500 | |
15 2.421800 | |
16 2.424100 | |
17 2.404000 | |
18 2.386900 | |
19 2.414400 | |
20 2.370600 | |
21 2.382500 | |
22 2.350700 | |
23 2.385700 | |
24 2.350400 | |
25 2.354900 | |
26 2.345400 | |
27 2.373000 | |
28 2.343200 | |
29 2.374300 | |
30 2.325000 | |
31 2.352000 | |
32 2.344600 | |
33 2.360000 | |
34 2.347400 | |
35 2.346700 | |
36 2.329000 | |
37 2.314600 | |
38 2.306000 | |
39 2.292600 | |
40 2.333800 | |
41 2.311500 | |
42 2.308300 | |
43 2.287400 | |
44 2.314100 | |
45 2.280400 | |
46 2.261300 | |
47 2.274200 | |
48 2.246900 | |
49 2.257100 | |
50 2.274500 | |
51 2.245500 | |
52 2.250700 | |
53 2.296600 | |
54 2.261000 | |
55 2.223800 | |
56 2.244000 | |
57 2.228500 | |
58 2.229100 | |
59 2.162300 | |
60 2.238000 | |
61 2.246000 | |
62 2.184800 | |
63 2.195000 | |
64 2.199500 | |
65 2.180000 | |
66 2.179800 | |
67 2.149700 | |
68 2.177000 | |
69 2.156600 | |
70 2.193400 | |
71 2.163400 | |
72 2.147400 | |
73 2.134700 | |
74 2.133200 | |
75 2.118000 | |
76 2.139000 | |
77 2.102000 | |
78 2.109100 | |
79 2.099000 | |
80 2.097500 | |
81 2.073200 | |
82 2.055200 | |
83 2.078100 | |
84 2.104800 | |
85 2.061100 | |
86 2.066500 | |
87 2.073500 | |
88 2.010500 | |
89 2.045700 | |
90 2.026700 | |
91 2.046500 | |
92 2.015300 | |
93 2.019100 | |
94 2.008600 | |
95 1.961000 | |
96 1.974300 | |
97 1.991700 | |
98 1.984700 | |
99 1.975900 | |
100 1.963900 | |
101 1.934300 | |
102 1.990400 | |
103 1.914900 | |
104 1.956100 | |
105 1.943400 | |
106 1.931000 | |
107 1.919000 | |
108 1.912800 | |
109 1.920400 | |
110 1.878300 | |
111 1.890800 | |
112 1.881900 | |
113 1.885400 | |
114 1.908400 | |
115 1.871200 | |
116 1.900000 | |
117 1.888000 | |
118 1.875100 | |
119 1.855000 | |
120 1.852100 | |
121 1.851200 | |
122 1.821800 | |
123 1.853000 | |
124 1.854700 | |
125 1.806900 | |
126 1.845300 | |
127 1.797800 | |
128 1.795300 | |
129 1.799500 | |
130 1.853900 | |
131 1.780100 | |
132 1.789400 | |
133 1.776700 | |
134 1.747300 | |
135 1.753700 | |
136 1.761300 | |
137 1.725500 | |
138 1.710800 | |
139 1.733500 | |
140 1.727000 | |
141 1.744300 | |
142 1.728900 | |
143 1.725100 | |
144 1.708000 | |
145 1.709000 | |
146 1.704600 | |
147 1.684600 | |
148 1.676100 | |
149 1.682800 | |
150 1.669900 | |
151 1.636400 | |
152 1.671500 | |
153 1.673200 | |
154 1.644300 | |
155 1.620800 | |
156 1.617500 | |
157 1.647700 | |
158 1.629300 | |
159 1.608800 | |
160 1.633000 | |
161 1.618200 | |
162 1.634300 | |
163 1.588400 | |
164 1.581100 | |
165 1.584500 | |
166 1.594800 | |
167 1.563800 | |
168 1.576900 | |
169 1.546300 | |
170 1.569800 | |
171 1.592300 | |
172 1.537800 | |
173 1.519200 | |
174 1.512100 | |
175 1.581500 | |
176 1.534500 | |
177 1.509400 | |
178 1.521300 | |
179 1.528500 | |
180 1.494300 | |
181 1.495000 | |
182 1.499700 | |
183 1.461300 | |
184 1.469200 | |
185 1.495200 | |
186 1.467400 | |
187 1.437000 | |
188 1.463000 | |
189 1.437900 | |
190 1.467400 | |
191 1.472300 | |
192 1.434000 | |
193 1.411500 | |
194 1.432500 | |
195 1.459800 | |
196 1.431900 | |
197 1.456200 | |
198 1.394800 | |
199 1.422700 | |
200 1.412800 | |
201 1.413800 | |
202 1.380000 | |
203 1.407400 | |
204 1.406200 | |
205 1.396100 | |
206 1.407100 | |
207 1.379600 | |
208 1.360600 | |
209 1.395100 | |
210 1.352500 | |
211 1.358900 | |
212 1.369100 | |
213 1.342600 | |
214 1.358900 | |
215 1.320300 | |
216 1.355700 | |
217 1.315700 | |
218 1.348800 | |
219 1.319800 | |
220 1.336500 | |
221 1.339600 | |
222 1.319500 | |
223 1.319600 | |
224 1.330200 | |
225 1.271700 | |
226 1.317300 | |
227 1.287400 | |
228 1.283300 | |
229 1.280500 | |
230 1.274200 | |
231 1.297000 | |
232 1.266400 | |
233 1.253100 | |
234 1.273100 | |
235 1.293300 | |
236 1.293000 | |
237 1.273500 | |
238 1.253100 | |
239 1.257700 | |
240 1.232500 | |
241 1.233100 | |
242 1.226000 | |
243 1.218400 | |
244 1.222800 | |
245 1.232100 | |
246 1.214800 | |
247 1.205700 | |
248 1.228400 | |
249 1.202600 | |
250 1.207700 | |
251 1.205800 | |
252 1.198400 | |
253 1.207800 | |
254 1.198600 | |
255 1.201700 | |
256 1.195500 | |
257 1.190500 | |
258 1.197100 | |
259 1.165100 | |
260 1.173200 | |
261 1.163400 | |
262 1.191500 | |
263 1.173700 | |
264 1.134400 | |
265 1.165500 | |
266 1.134800 | |
267 1.149500 | |
268 1.173100 | |
269 1.137000 | |
270 1.171200 | |
271 1.120600 | |
272 1.147600 | |
273 1.128300 | |
274 1.150300 | |
275 1.147700 | |
276 1.150200 | |
277 1.106900 | |
278 1.145400 | |
279 1.117300 | |
280 1.121900 | |
281 1.139400 | |
282 1.109100 | |
283 1.142100 | |
284 1.117300 | |
285 1.104200 | |
286 1.134200 | |
287 1.100400 | |
288 1.092100 | |
289 1.120500 | |
290 1.088100 | |
291 1.128600 | |
292 1.105400 | |
293 1.094000 | |
294 1.108900 | |
295 1.073100 | |
296 1.100900 | |
297 1.092400 | |
298 1.090300 | |
299 1.079400 | |
300 1.090300 | |
301 1.086100 | |
302 1.080300 | |
303 1.075600 | |
304 1.075900 | |
305 1.092200 | |
306 1.070600 | |
307 1.068800 | |
308 1.071300 | |
309 1.073900 | |
310 1.055400 | |
311 1.067900 | |
312 1.041000 | |
313 1.048600 | |
314 1.072600 | |
315 1.058800 | |
316 1.039000 | |
317 1.072300 | |
318 1.056600 | |
319 1.035100 | |
320 1.052800 | |
321 1.046700 | |
322 1.073400 | |
323 1.054000 | |
324 1.077100 | |
325 1.035200 | |
326 1.027700 | |
327 1.060000 | |
328 1.048900 | |
329 1.040000 | |
330 1.026900 | |
331 1.049300 | |
332 1.017100 | |
333 0.996200 | |
334 1.006400 | |
335 1.026700 | |
336 1.073700 | |
337 1.039200 | |
338 1.041100 | |
339 1.054300 | |
340 1.013500 | |
341 1.024900 | |
342 1.003300 | |
343 0.993400 | |
344 1.037300 | |
345 1.009300 | |
346 1.030400 | |
347 1.001400 | |
348 1.012100 | |
349 1.027300 | |
350 1.012700 | |
351 1.013400 | |
352 1.004400 | |
353 1.024800 | |
354 0.990700 | |
355 1.048600 | |
356 0.992700 | |
357 0.991800 | |
358 0.985300 | |
359 1.019100 | |
360 1.007300 | |
361 1.025500 | |
362 0.999100 | |
363 0.997900 | |
364 1.013300 | |
365 1.014700 | |
366 1.037700 | |
367 0.992400 | |
368 0.988800 | |
369 0.993900 | |
370 0.999500 | |
371 0.973000 | |
372 0.972200 | |
373 0.989200 | |
374 0.994500 | |
375 0.995800 | |
376 0.992000 | |
377 0.977800 | |
378 0.975700 | |
379 0.973700 | |
380 0.986200 | |
381 1.008000 | |
382 0.954100 | |
383 1.015900 | |
384 1.008200 | |
385 0.974700 | |
386 0.987500 | |
387 0.993700 | |
388 0.999200 | |
389 1.000700 | |
390 0.978600 | |
391 0.956200 | |
392 1.001600 | |
393 0.971300 | |
394 0.965800 | |
395 0.981000 | |
396 0.965400 | |
397 0.974200 | |
398 0.970700 | |
399 0.953500 | |
400 0.979700 | |
401 0.957700 | |
402 0.984600 | |
403 1.015600 | |
404 0.976800 | |
405 0.969100 | |
406 0.974200 | |
407 0.983300 | |
408 0.974300 | |
409 0.980600 | |
410 0.986300 | |
411 0.968100 | |
412 0.980500 | |
413 0.976200 | |
414 0.987300 | |
415 0.971600 | |
416 0.985200 | |
417 0.989800 | |
418 0.972000 | |
419 0.971100 | |
420 0.988800 | |
421 0.965600 | |
422 1.020400 | |
423 0.978000 | |
424 0.987800 | |
425 0.953700 | |
426 0.990400 | |
427 0.982900 | |
428 0.989100 | |
429 0.983800 | |
430 0.981500 | |
431 0.966900 | |
432 0.967300 | |
433 0.999400 | |
434 0.973100 | |
435 0.980500 | |
436 0.995500 | |
437 0.960300 | |
438 0.953700 | |
439 0.993600 | |
440 0.965100 | |
Dataset({ | |
features: ['input_ids', 'attention_mask'], | |
num_rows: 56355 | |
}) | |
{'input_ids': [0, 13866, 338, 263, 1139, 393, 16612, 263, 848, 2009, 29892, 3300, 2859, 411, 385, 1881, 393, 16612, 263, 3758, 1591, 29889, 29871, 14350, 263, 3758, 2346, 393, 5663, 17180, 278, 848, 29889, 13, 2277, 29937, 894, 29901, 24948, 592, 825, 278, 11486, 526, 363, 4275, 8314, 29871, 13, 2277, 29937, 10567, 29901, 6137, 29871, 29896, 29899, 29896, 29900, 29900, 29900, 29896, 29947, 29896, 29899, 29896, 756, 4341, 4306, 29914, 357, 768, 706, 313, 726, 511, 1626, 29914, 7042, 12384, 313, 726, 511, 5809, 313, 726, 511, 7583, 269, 1188, 273, 313, 726, 511, 7583, 3652, 313, 726, 511, 3664, 267, 313, 726, 467, 259, 13, 2277, 29937, 673, 29901, 5097, 29871, 8695, 3895, 29871, 29896, 29899, 29896, 29900, 29900, 29900, 29896, 29947, 29896, 29899, 29896, 5754, 9626, 269, 1188, 273, 353, 525, 6156, 2692, 29950, 319, 29965, 10810, 1964, 10764, 29915, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} |