File size: 1,778 Bytes
bebddf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: naver-clova-ix/donut-base
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: donut-vishnu_hwr2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# donut-vishnu_hwr2

This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3868

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7694        | 1.0   | 186  | 0.8806          |
| 0.5281        | 2.0   | 372  | 0.4291          |
| 0.0873        | 3.0   | 558  | 0.3671          |
| 0.2829        | 4.0   | 744  | 0.3432          |
| 0.0511        | 5.0   | 930  | 0.3604          |
| 0.0559        | 6.0   | 1116 | 0.3612          |
| 0.0407        | 7.0   | 1302 | 0.3728          |
| 0.0878        | 8.0   | 1488 | 0.3828          |
| 0.0801        | 9.0   | 1674 | 0.3868          |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1