sreejith8100
commited on
Commit
•
85ca93c
1
Parent(s):
e8c2dc3
End of training
Browse files- README.md +28 -41
- pytorch_model.bin +1 -1
- tokenizer_config.json +1 -0
README.md
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
base_model: microsoft/layoutlmv2-base-uncased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
model-index:
|
@@ -13,33 +12,16 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# layoutlm-funsd
|
15 |
|
16 |
-
This model is a fine-tuned version of [microsoft/
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
- Andom number Number: 19
|
27 |
-
- Ather Name Precision: 1.0
|
28 |
-
- Ather Name Recall: 1.0
|
29 |
-
- Ather Name F1: 1.0
|
30 |
-
- Ather Name Number: 19
|
31 |
-
- Lace Of Birth Precision: 1.0
|
32 |
-
- Lace Of Birth Recall: 1.0
|
33 |
-
- Lace Of Birth F1: 1.0
|
34 |
-
- Lace Of Birth Number: 5
|
35 |
-
- Other Name Precision: 1.0
|
36 |
-
- Other Name Recall: 1.0
|
37 |
-
- Other Name F1: 1.0
|
38 |
-
- Other Name Number: 19
|
39 |
-
- Overall Precision: 1.0
|
40 |
-
- Overall Recall: 1.0
|
41 |
-
- Overall F1: 1.0
|
42 |
-
- Overall Accuracy: 1.0
|
43 |
|
44 |
## Model description
|
45 |
|
@@ -64,22 +46,27 @@ The following hyperparameters were used during training:
|
|
64 |
- seed: 42
|
65 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
- lr_scheduler_type: linear
|
67 |
-
- num_epochs:
|
68 |
|
69 |
### Training results
|
70 |
|
71 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
72 |
-
|
73 |
-
| 1.
|
74 |
-
|
|
75 |
-
|
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
### Framework versions
|
|
|
1 |
---
|
2 |
+
base_model: microsoft/layoutlm-base-uncased
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
|
|
12 |
|
13 |
# layoutlm-funsd
|
14 |
|
15 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.6801
|
18 |
+
- Answer: {'precision': 0.6865671641791045, 'recall': 0.796044499381953, 'f1': 0.7372638809387521, 'number': 809}
|
19 |
+
- Header: {'precision': 0.30714285714285716, 'recall': 0.36134453781512604, 'f1': 0.33204633204633205, 'number': 119}
|
20 |
+
- Question: {'precision': 0.7743634767339772, 'recall': 0.828169014084507, 'f1': 0.8003629764065335, 'number': 1065}
|
21 |
+
- Overall Precision: 0.7077
|
22 |
+
- Overall Recall: 0.7873
|
23 |
+
- Overall F1: 0.7454
|
24 |
+
- Overall Accuracy: 0.8029
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
46 |
- seed: 42
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 15
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
55 |
+
| 1.7872 | 1.0 | 10 | 1.5976 | {'precision': 0.020486555697823303, 'recall': 0.019777503090234856, 'f1': 0.02012578616352201, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2535014005602241, 'recall': 0.1699530516431925, 'f1': 0.20348510399100617, 'number': 1065} | 0.1318 | 0.0988 | 0.1130 | 0.3743 |
|
56 |
+
| 1.4377 | 2.0 | 20 | 1.2582 | {'precision': 0.20262869660460023, 'recall': 0.22867737948084055, 'f1': 0.21486643437862948, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4521497919556172, 'recall': 0.612206572769953, 'f1': 0.5201435979258078, 'number': 1065} | 0.3553 | 0.4200 | 0.3849 | 0.5972 |
|
57 |
+
| 1.0609 | 3.0 | 30 | 0.9282 | {'precision': 0.4720496894409938, 'recall': 0.5636588380716935, 'f1': 0.5138028169014084, 'number': 809} | {'precision': 0.08, 'recall': 0.01680672268907563, 'f1': 0.02777777777777778, 'number': 119} | {'precision': 0.5755947812739831, 'recall': 0.704225352112676, 'f1': 0.6334459459459459, 'number': 1065} | 0.5266 | 0.6061 | 0.5636 | 0.7029 |
|
58 |
+
| 0.8126 | 4.0 | 40 | 0.7805 | {'precision': 0.5814176245210728, 'recall': 0.7503090234857849, 'f1': 0.6551538046411225, 'number': 809} | {'precision': 0.2, 'recall': 0.10084033613445378, 'f1': 0.1340782122905028, 'number': 119} | {'precision': 0.6699916874480466, 'recall': 0.7568075117370892, 'f1': 0.710758377425044, 'number': 1065} | 0.6177 | 0.7150 | 0.6628 | 0.7550 |
|
59 |
+
| 0.6594 | 5.0 | 50 | 0.7015 | {'precision': 0.6331967213114754, 'recall': 0.7639060568603214, 'f1': 0.6924369747899161, 'number': 809} | {'precision': 0.2222222222222222, 'recall': 0.13445378151260504, 'f1': 0.16753926701570682, 'number': 119} | {'precision': 0.7241681260945709, 'recall': 0.7765258215962442, 'f1': 0.7494336202990485, 'number': 1065} | 0.6671 | 0.7331 | 0.6985 | 0.7820 |
|
60 |
+
| 0.5617 | 6.0 | 60 | 0.6732 | {'precision': 0.6566844919786097, 'recall': 0.7589616810877626, 'f1': 0.7041284403669724, 'number': 809} | {'precision': 0.2, 'recall': 0.21008403361344538, 'f1': 0.20491803278688528, 'number': 119} | {'precision': 0.7147385103011094, 'recall': 0.8469483568075117, 'f1': 0.7752470992694457, 'number': 1065} | 0.6637 | 0.7732 | 0.7143 | 0.7867 |
|
61 |
+
| 0.4814 | 7.0 | 70 | 0.6633 | {'precision': 0.6609989373007439, 'recall': 0.7688504326328801, 'f1': 0.7108571428571427, 'number': 809} | {'precision': 0.27586206896551724, 'recall': 0.2689075630252101, 'f1': 0.27234042553191484, 'number': 119} | {'precision': 0.7466442953020134, 'recall': 0.8356807511737089, 'f1': 0.7886575099689852, 'number': 1065} | 0.6865 | 0.7747 | 0.7280 | 0.7961 |
|
62 |
+
| 0.4351 | 8.0 | 80 | 0.6481 | {'precision': 0.6829533116178067, 'recall': 0.7775030902348579, 'f1': 0.7271676300578035, 'number': 809} | {'precision': 0.2846153846153846, 'recall': 0.31092436974789917, 'f1': 0.29718875502008035, 'number': 119} | {'precision': 0.7567796610169492, 'recall': 0.8384976525821596, 'f1': 0.7955456570155902, 'number': 1065} | 0.6988 | 0.7822 | 0.7382 | 0.7985 |
|
63 |
+
| 0.3819 | 9.0 | 90 | 0.6559 | {'precision': 0.6789473684210526, 'recall': 0.7972805933250927, 'f1': 0.7333712336554862, 'number': 809} | {'precision': 0.3170731707317073, 'recall': 0.3277310924369748, 'f1': 0.32231404958677684, 'number': 119} | {'precision': 0.7789566755083996, 'recall': 0.8272300469483568, 'f1': 0.802367941712204, 'number': 1065} | 0.7101 | 0.7852 | 0.7458 | 0.8087 |
|
64 |
+
| 0.349 | 10.0 | 100 | 0.6553 | {'precision': 0.6794055201698513, 'recall': 0.7911001236093943, 'f1': 0.7310108509423187, 'number': 809} | {'precision': 0.33076923076923076, 'recall': 0.36134453781512604, 'f1': 0.34538152610441764, 'number': 119} | {'precision': 0.7757417102966842, 'recall': 0.8347417840375587, 'f1': 0.8041610131162371, 'number': 1065} | 0.7087 | 0.7888 | 0.7466 | 0.8055 |
|
65 |
+
| 0.3137 | 11.0 | 110 | 0.6590 | {'precision': 0.6915584415584416, 'recall': 0.7898640296662547, 'f1': 0.7374495095210617, 'number': 809} | {'precision': 0.2971014492753623, 'recall': 0.3445378151260504, 'f1': 0.31906614785992216, 'number': 119} | {'precision': 0.7753496503496503, 'recall': 0.8328638497652582, 'f1': 0.8030783159800814, 'number': 1065} | 0.7103 | 0.7863 | 0.7464 | 0.8082 |
|
66 |
+
| 0.3015 | 12.0 | 120 | 0.6652 | {'precision': 0.6789862724392819, 'recall': 0.7948084054388134, 'f1': 0.7323462414578588, 'number': 809} | {'precision': 0.3049645390070922, 'recall': 0.36134453781512604, 'f1': 0.3307692307692308, 'number': 119} | {'precision': 0.77117903930131, 'recall': 0.8291079812206573, 'f1': 0.7990950226244343, 'number': 1065} | 0.7026 | 0.7873 | 0.7425 | 0.7986 |
|
67 |
+
| 0.2804 | 13.0 | 130 | 0.6745 | {'precision': 0.6993464052287581, 'recall': 0.7935723114956736, 'f1': 0.7434858135495078, 'number': 809} | {'precision': 0.31386861313868614, 'recall': 0.36134453781512604, 'f1': 0.3359375, 'number': 119} | {'precision': 0.7880143112701252, 'recall': 0.8272300469483568, 'f1': 0.8071461291800274, 'number': 1065} | 0.7207 | 0.7858 | 0.7518 | 0.8055 |
|
68 |
+
| 0.2658 | 14.0 | 140 | 0.6757 | {'precision': 0.6935483870967742, 'recall': 0.7972805933250927, 'f1': 0.7418056354226568, 'number': 809} | {'precision': 0.31386861313868614, 'recall': 0.36134453781512604, 'f1': 0.3359375, 'number': 119} | {'precision': 0.7793468667255075, 'recall': 0.8291079812206573, 'f1': 0.8034576888080072, 'number': 1065} | 0.7141 | 0.7883 | 0.7493 | 0.8031 |
|
69 |
+
| 0.2581 | 15.0 | 150 | 0.6801 | {'precision': 0.6865671641791045, 'recall': 0.796044499381953, 'f1': 0.7372638809387521, 'number': 809} | {'precision': 0.30714285714285716, 'recall': 0.36134453781512604, 'f1': 0.33204633204633205, 'number': 119} | {'precision': 0.7743634767339772, 'recall': 0.828169014084507, 'f1': 0.8003629764065335, 'number': 1065} | 0.7077 | 0.7873 | 0.7454 | 0.8029 |
|
70 |
|
71 |
|
72 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450603969
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f676e76fff4af505f771fa455bc5574a6b4ebc40f616c063f109b4c22f89ac54
|
3 |
size 450603969
|
tokenizer_config.json
CHANGED
@@ -42,6 +42,7 @@
|
|
42 |
}
|
43 |
},
|
44 |
"additional_special_tokens": [],
|
|
|
45 |
"clean_up_tokenization_spaces": true,
|
46 |
"cls_token": "[CLS]",
|
47 |
"cls_token_box": [
|
|
|
42 |
}
|
43 |
},
|
44 |
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
"clean_up_tokenization_spaces": true,
|
47 |
"cls_token": "[CLS]",
|
48 |
"cls_token_box": [
|