srikarvar commited on
Commit
77ca865
1 Parent(s): a7b1c2c

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,862 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy
10
+ - cosine_accuracy_threshold
11
+ - cosine_f1
12
+ - cosine_f1_threshold
13
+ - cosine_precision
14
+ - cosine_recall
15
+ - cosine_ap
16
+ - dot_accuracy
17
+ - dot_accuracy_threshold
18
+ - dot_f1
19
+ - dot_f1_threshold
20
+ - dot_precision
21
+ - dot_recall
22
+ - dot_ap
23
+ - manhattan_accuracy
24
+ - manhattan_accuracy_threshold
25
+ - manhattan_f1
26
+ - manhattan_f1_threshold
27
+ - manhattan_precision
28
+ - manhattan_recall
29
+ - manhattan_ap
30
+ - euclidean_accuracy
31
+ - euclidean_accuracy_threshold
32
+ - euclidean_f1
33
+ - euclidean_f1_threshold
34
+ - euclidean_precision
35
+ - euclidean_recall
36
+ - euclidean_ap
37
+ - max_accuracy
38
+ - max_accuracy_threshold
39
+ - max_f1
40
+ - max_f1_threshold
41
+ - max_precision
42
+ - max_recall
43
+ - max_ap
44
+ pipeline_tag: sentence-similarity
45
+ tags:
46
+ - sentence-transformers
47
+ - sentence-similarity
48
+ - feature-extraction
49
+ - generated_from_trainer
50
+ - dataset_size:2000
51
+ - loss:OnlineContrastiveLoss
52
+ widget:
53
+ - source_sentence: What is the process for creating a new account?
54
+ sentences:
55
+ - How do I reserve a flight online?
56
+ - Can I deposit money in my bank?
57
+ - How do I sign up for a new account?
58
+ - source_sentence: How can I improve my English?
59
+ sentences:
60
+ - What are ingredients of pizza
61
+ - How can I enhance my English skills?
62
+ - What are the ingredients of pizza
63
+ - source_sentence: Where can I buy a new laptop?
64
+ sentences:
65
+ - Why is it essential to maintain a balanced diet?
66
+ - How do I delete my account?
67
+ - Where can I buy a new bicycle?
68
+ - source_sentence: How do I access the company's intranet?
69
+ sentences:
70
+ - '"to kill a Mockingbird" writer'
71
+ - Steps to reset password
72
+ - What steps do I need to follow to log into the company's internal network?
73
+ - source_sentence: How can I improve my English?
74
+ sentences:
75
+ - How can I gain weight?
76
+ - How can I improve my Spanish?
77
+ - How can I best approach weight loss?
78
+ model-index:
79
+ - name: e5 cogcache small
80
+ results:
81
+ - task:
82
+ type: binary-classification
83
+ name: Binary Classification
84
+ dataset:
85
+ name: quora duplicates dev
86
+ type: quora-duplicates-dev
87
+ metrics:
88
+ - type: cosine_accuracy
89
+ value: 0.6846153846153846
90
+ name: Cosine Accuracy
91
+ - type: cosine_accuracy_threshold
92
+ value: 0.8908529877662659
93
+ name: Cosine Accuracy Threshold
94
+ - type: cosine_f1
95
+ value: 0.8038277511961722
96
+ name: Cosine F1
97
+ - type: cosine_f1_threshold
98
+ value: 0.8908529877662659
99
+ name: Cosine F1 Threshold
100
+ - type: cosine_precision
101
+ value: 0.672
102
+ name: Cosine Precision
103
+ - type: cosine_recall
104
+ value: 1.0
105
+ name: Cosine Recall
106
+ - type: cosine_ap
107
+ value: 0.7427516415022575
108
+ name: Cosine Ap
109
+ - type: dot_accuracy
110
+ value: 0.6846153846153846
111
+ name: Dot Accuracy
112
+ - type: dot_accuracy_threshold
113
+ value: 0.8908529281616211
114
+ name: Dot Accuracy Threshold
115
+ - type: dot_f1
116
+ value: 0.8038277511961722
117
+ name: Dot F1
118
+ - type: dot_f1_threshold
119
+ value: 0.8908529281616211
120
+ name: Dot F1 Threshold
121
+ - type: dot_precision
122
+ value: 0.672
123
+ name: Dot Precision
124
+ - type: dot_recall
125
+ value: 1.0
126
+ name: Dot Recall
127
+ - type: dot_ap
128
+ value: 0.7427516415022575
129
+ name: Dot Ap
130
+ - type: manhattan_accuracy
131
+ value: 0.6846153846153846
132
+ name: Manhattan Accuracy
133
+ - type: manhattan_accuracy_threshold
134
+ value: 6.857762336730957
135
+ name: Manhattan Accuracy Threshold
136
+ - type: manhattan_f1
137
+ value: 0.8038277511961722
138
+ name: Manhattan F1
139
+ - type: manhattan_f1_threshold
140
+ value: 7.227236747741699
141
+ name: Manhattan F1 Threshold
142
+ - type: manhattan_precision
143
+ value: 0.672
144
+ name: Manhattan Precision
145
+ - type: manhattan_recall
146
+ value: 1.0
147
+ name: Manhattan Recall
148
+ - type: manhattan_ap
149
+ value: 0.7429674193207231
150
+ name: Manhattan Ap
151
+ - type: euclidean_accuracy
152
+ value: 0.6846153846153846
153
+ name: Euclidean Accuracy
154
+ - type: euclidean_accuracy_threshold
155
+ value: 0.467207670211792
156
+ name: Euclidean Accuracy Threshold
157
+ - type: euclidean_f1
158
+ value: 0.8038277511961722
159
+ name: Euclidean F1
160
+ - type: euclidean_f1_threshold
161
+ value: 0.467207670211792
162
+ name: Euclidean F1 Threshold
163
+ - type: euclidean_precision
164
+ value: 0.672
165
+ name: Euclidean Precision
166
+ - type: euclidean_recall
167
+ value: 1.0
168
+ name: Euclidean Recall
169
+ - type: euclidean_ap
170
+ value: 0.7427516415022575
171
+ name: Euclidean Ap
172
+ - type: max_accuracy
173
+ value: 0.6846153846153846
174
+ name: Max Accuracy
175
+ - type: max_accuracy_threshold
176
+ value: 6.857762336730957
177
+ name: Max Accuracy Threshold
178
+ - type: max_f1
179
+ value: 0.8038277511961722
180
+ name: Max F1
181
+ - type: max_f1_threshold
182
+ value: 7.227236747741699
183
+ name: Max F1 Threshold
184
+ - type: max_precision
185
+ value: 0.672
186
+ name: Max Precision
187
+ - type: max_recall
188
+ value: 1.0
189
+ name: Max Recall
190
+ - type: max_ap
191
+ value: 0.7429674193207231
192
+ name: Max Ap
193
+ - type: cosine_accuracy
194
+ value: 0.8923076923076924
195
+ name: Cosine Accuracy
196
+ - type: cosine_accuracy_threshold
197
+ value: 0.7950945496559143
198
+ name: Cosine Accuracy Threshold
199
+ - type: cosine_f1
200
+ value: 0.923076923076923
201
+ name: Cosine F1
202
+ - type: cosine_f1_threshold
203
+ value: 0.7486392259597778
204
+ name: Cosine F1 Threshold
205
+ - type: cosine_precision
206
+ value: 0.8571428571428571
207
+ name: Cosine Precision
208
+ - type: cosine_recall
209
+ value: 1.0
210
+ name: Cosine Recall
211
+ - type: cosine_ap
212
+ value: 0.9715516495521109
213
+ name: Cosine Ap
214
+ - type: dot_accuracy
215
+ value: 0.8923076923076924
216
+ name: Dot Accuracy
217
+ - type: dot_accuracy_threshold
218
+ value: 0.7950945496559143
219
+ name: Dot Accuracy Threshold
220
+ - type: dot_f1
221
+ value: 0.923076923076923
222
+ name: Dot F1
223
+ - type: dot_f1_threshold
224
+ value: 0.7486392259597778
225
+ name: Dot F1 Threshold
226
+ - type: dot_precision
227
+ value: 0.8571428571428571
228
+ name: Dot Precision
229
+ - type: dot_recall
230
+ value: 1.0
231
+ name: Dot Recall
232
+ - type: dot_ap
233
+ value: 0.9715516495521109
234
+ name: Dot Ap
235
+ - type: manhattan_accuracy
236
+ value: 0.8846153846153846
237
+ name: Manhattan Accuracy
238
+ - type: manhattan_accuracy_threshold
239
+ value: 10.63049602508545
240
+ name: Manhattan Accuracy Threshold
241
+ - type: manhattan_f1
242
+ value: 0.9171270718232044
243
+ name: Manhattan F1
244
+ - type: manhattan_f1_threshold
245
+ value: 10.63049602508545
246
+ name: Manhattan F1 Threshold
247
+ - type: manhattan_precision
248
+ value: 0.8556701030927835
249
+ name: Manhattan Precision
250
+ - type: manhattan_recall
251
+ value: 0.9880952380952381
252
+ name: Manhattan Recall
253
+ - type: manhattan_ap
254
+ value: 0.9702468819331687
255
+ name: Manhattan Ap
256
+ - type: euclidean_accuracy
257
+ value: 0.8923076923076924
258
+ name: Euclidean Accuracy
259
+ - type: euclidean_accuracy_threshold
260
+ value: 0.6401599049568176
261
+ name: Euclidean Accuracy Threshold
262
+ - type: euclidean_f1
263
+ value: 0.923076923076923
264
+ name: Euclidean F1
265
+ - type: euclidean_f1_threshold
266
+ value: 0.7090282440185547
267
+ name: Euclidean F1 Threshold
268
+ - type: euclidean_precision
269
+ value: 0.8571428571428571
270
+ name: Euclidean Precision
271
+ - type: euclidean_recall
272
+ value: 1.0
273
+ name: Euclidean Recall
274
+ - type: euclidean_ap
275
+ value: 0.9715516495521109
276
+ name: Euclidean Ap
277
+ - type: max_accuracy
278
+ value: 0.8923076923076924
279
+ name: Max Accuracy
280
+ - type: max_accuracy_threshold
281
+ value: 10.63049602508545
282
+ name: Max Accuracy Threshold
283
+ - type: max_f1
284
+ value: 0.923076923076923
285
+ name: Max F1
286
+ - type: max_f1_threshold
287
+ value: 10.63049602508545
288
+ name: Max F1 Threshold
289
+ - type: max_precision
290
+ value: 0.8571428571428571
291
+ name: Max Precision
292
+ - type: max_recall
293
+ value: 1.0
294
+ name: Max Recall
295
+ - type: max_ap
296
+ value: 0.9715516495521109
297
+ name: Max Ap
298
+ - task:
299
+ type: binary-classification
300
+ name: Binary Classification
301
+ dataset:
302
+ name: e5 cogcache dev
303
+ type: e5-cogcache-dev
304
+ metrics:
305
+ - type: cosine_accuracy
306
+ value: 0.8923076923076924
307
+ name: Cosine Accuracy
308
+ - type: cosine_accuracy_threshold
309
+ value: 0.7950945496559143
310
+ name: Cosine Accuracy Threshold
311
+ - type: cosine_f1
312
+ value: 0.923076923076923
313
+ name: Cosine F1
314
+ - type: cosine_f1_threshold
315
+ value: 0.7486392259597778
316
+ name: Cosine F1 Threshold
317
+ - type: cosine_precision
318
+ value: 0.8571428571428571
319
+ name: Cosine Precision
320
+ - type: cosine_recall
321
+ value: 1.0
322
+ name: Cosine Recall
323
+ - type: cosine_ap
324
+ value: 0.9715516495521109
325
+ name: Cosine Ap
326
+ - type: dot_accuracy
327
+ value: 0.8923076923076924
328
+ name: Dot Accuracy
329
+ - type: dot_accuracy_threshold
330
+ value: 0.7950945496559143
331
+ name: Dot Accuracy Threshold
332
+ - type: dot_f1
333
+ value: 0.923076923076923
334
+ name: Dot F1
335
+ - type: dot_f1_threshold
336
+ value: 0.7486392259597778
337
+ name: Dot F1 Threshold
338
+ - type: dot_precision
339
+ value: 0.8571428571428571
340
+ name: Dot Precision
341
+ - type: dot_recall
342
+ value: 1.0
343
+ name: Dot Recall
344
+ - type: dot_ap
345
+ value: 0.9715516495521109
346
+ name: Dot Ap
347
+ - type: manhattan_accuracy
348
+ value: 0.8846153846153846
349
+ name: Manhattan Accuracy
350
+ - type: manhattan_accuracy_threshold
351
+ value: 10.63049602508545
352
+ name: Manhattan Accuracy Threshold
353
+ - type: manhattan_f1
354
+ value: 0.9171270718232044
355
+ name: Manhattan F1
356
+ - type: manhattan_f1_threshold
357
+ value: 10.63049602508545
358
+ name: Manhattan F1 Threshold
359
+ - type: manhattan_precision
360
+ value: 0.8556701030927835
361
+ name: Manhattan Precision
362
+ - type: manhattan_recall
363
+ value: 0.9880952380952381
364
+ name: Manhattan Recall
365
+ - type: manhattan_ap
366
+ value: 0.9702468819331687
367
+ name: Manhattan Ap
368
+ - type: euclidean_accuracy
369
+ value: 0.8923076923076924
370
+ name: Euclidean Accuracy
371
+ - type: euclidean_accuracy_threshold
372
+ value: 0.6401599049568176
373
+ name: Euclidean Accuracy Threshold
374
+ - type: euclidean_f1
375
+ value: 0.923076923076923
376
+ name: Euclidean F1
377
+ - type: euclidean_f1_threshold
378
+ value: 0.7090282440185547
379
+ name: Euclidean F1 Threshold
380
+ - type: euclidean_precision
381
+ value: 0.8571428571428571
382
+ name: Euclidean Precision
383
+ - type: euclidean_recall
384
+ value: 1.0
385
+ name: Euclidean Recall
386
+ - type: euclidean_ap
387
+ value: 0.9715516495521109
388
+ name: Euclidean Ap
389
+ - type: max_accuracy
390
+ value: 0.8923076923076924
391
+ name: Max Accuracy
392
+ - type: max_accuracy_threshold
393
+ value: 10.63049602508545
394
+ name: Max Accuracy Threshold
395
+ - type: max_f1
396
+ value: 0.923076923076923
397
+ name: Max F1
398
+ - type: max_f1_threshold
399
+ value: 10.63049602508545
400
+ name: Max F1 Threshold
401
+ - type: max_precision
402
+ value: 0.8571428571428571
403
+ name: Max Precision
404
+ - type: max_recall
405
+ value: 1.0
406
+ name: Max Recall
407
+ - type: max_ap
408
+ value: 0.9715516495521109
409
+ name: Max Ap
410
+ ---
411
+
412
+ # e5 cogcache small
413
+
414
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
415
+
416
+ ## Model Details
417
+
418
+ ### Model Description
419
+ - **Model Type:** Sentence Transformer
420
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
421
+ - **Maximum Sequence Length:** 512 tokens
422
+ - **Output Dimensionality:** 384 tokens
423
+ - **Similarity Function:** Cosine Similarity
424
+ <!-- - **Training Dataset:** Unknown -->
425
+ - **Language:** en
426
+ - **License:** apache-2.0
427
+
428
+ ### Model Sources
429
+
430
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
431
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
432
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
433
+
434
+ ### Full Model Architecture
435
+
436
+ ```
437
+ SentenceTransformer(
438
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
439
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
440
+ (2): Normalize()
441
+ )
442
+ ```
443
+
444
+ ## Usage
445
+
446
+ ### Direct Usage (Sentence Transformers)
447
+
448
+ First install the Sentence Transformers library:
449
+
450
+ ```bash
451
+ pip install -U sentence-transformers
452
+ ```
453
+
454
+ Then you can load this model and run inference.
455
+ ```python
456
+ from sentence_transformers import SentenceTransformer
457
+
458
+ # Download from the 🤗 Hub
459
+ model = SentenceTransformer("srikarvar/e5-small-cogcachedata-1")
460
+ # Run inference
461
+ sentences = [
462
+ 'How can I improve my English?',
463
+ 'How can I improve my Spanish?',
464
+ 'How can I gain weight?',
465
+ ]
466
+ embeddings = model.encode(sentences)
467
+ print(embeddings.shape)
468
+ # [3, 384]
469
+
470
+ # Get the similarity scores for the embeddings
471
+ similarities = model.similarity(embeddings, embeddings)
472
+ print(similarities.shape)
473
+ # [3, 3]
474
+ ```
475
+
476
+ <!--
477
+ ### Direct Usage (Transformers)
478
+
479
+ <details><summary>Click to see the direct usage in Transformers</summary>
480
+
481
+ </details>
482
+ -->
483
+
484
+ <!--
485
+ ### Downstream Usage (Sentence Transformers)
486
+
487
+ You can finetune this model on your own dataset.
488
+
489
+ <details><summary>Click to expand</summary>
490
+
491
+ </details>
492
+ -->
493
+
494
+ <!--
495
+ ### Out-of-Scope Use
496
+
497
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
498
+ -->
499
+
500
+ ## Evaluation
501
+
502
+ ### Metrics
503
+
504
+ #### Binary Classification
505
+ * Dataset: `quora-duplicates-dev`
506
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
507
+
508
+ | Metric | Value |
509
+ |:-----------------------------|:----------|
510
+ | cosine_accuracy | 0.6846 |
511
+ | cosine_accuracy_threshold | 0.8909 |
512
+ | cosine_f1 | 0.8038 |
513
+ | cosine_f1_threshold | 0.8909 |
514
+ | cosine_precision | 0.672 |
515
+ | cosine_recall | 1.0 |
516
+ | cosine_ap | 0.7428 |
517
+ | dot_accuracy | 0.6846 |
518
+ | dot_accuracy_threshold | 0.8909 |
519
+ | dot_f1 | 0.8038 |
520
+ | dot_f1_threshold | 0.8909 |
521
+ | dot_precision | 0.672 |
522
+ | dot_recall | 1.0 |
523
+ | dot_ap | 0.7428 |
524
+ | manhattan_accuracy | 0.6846 |
525
+ | manhattan_accuracy_threshold | 6.8578 |
526
+ | manhattan_f1 | 0.8038 |
527
+ | manhattan_f1_threshold | 7.2272 |
528
+ | manhattan_precision | 0.672 |
529
+ | manhattan_recall | 1.0 |
530
+ | manhattan_ap | 0.743 |
531
+ | euclidean_accuracy | 0.6846 |
532
+ | euclidean_accuracy_threshold | 0.4672 |
533
+ | euclidean_f1 | 0.8038 |
534
+ | euclidean_f1_threshold | 0.4672 |
535
+ | euclidean_precision | 0.672 |
536
+ | euclidean_recall | 1.0 |
537
+ | euclidean_ap | 0.7428 |
538
+ | max_accuracy | 0.6846 |
539
+ | max_accuracy_threshold | 6.8578 |
540
+ | max_f1 | 0.8038 |
541
+ | max_f1_threshold | 7.2272 |
542
+ | max_precision | 0.672 |
543
+ | max_recall | 1.0 |
544
+ | **max_ap** | **0.743** |
545
+
546
+ #### Binary Classification
547
+ * Dataset: `quora-duplicates-dev`
548
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
549
+
550
+ | Metric | Value |
551
+ |:-----------------------------|:-----------|
552
+ | cosine_accuracy | 0.8923 |
553
+ | cosine_accuracy_threshold | 0.7951 |
554
+ | cosine_f1 | 0.9231 |
555
+ | cosine_f1_threshold | 0.7486 |
556
+ | cosine_precision | 0.8571 |
557
+ | cosine_recall | 1.0 |
558
+ | cosine_ap | 0.9716 |
559
+ | dot_accuracy | 0.8923 |
560
+ | dot_accuracy_threshold | 0.7951 |
561
+ | dot_f1 | 0.9231 |
562
+ | dot_f1_threshold | 0.7486 |
563
+ | dot_precision | 0.8571 |
564
+ | dot_recall | 1.0 |
565
+ | dot_ap | 0.9716 |
566
+ | manhattan_accuracy | 0.8846 |
567
+ | manhattan_accuracy_threshold | 10.6305 |
568
+ | manhattan_f1 | 0.9171 |
569
+ | manhattan_f1_threshold | 10.6305 |
570
+ | manhattan_precision | 0.8557 |
571
+ | manhattan_recall | 0.9881 |
572
+ | manhattan_ap | 0.9702 |
573
+ | euclidean_accuracy | 0.8923 |
574
+ | euclidean_accuracy_threshold | 0.6402 |
575
+ | euclidean_f1 | 0.9231 |
576
+ | euclidean_f1_threshold | 0.709 |
577
+ | euclidean_precision | 0.8571 |
578
+ | euclidean_recall | 1.0 |
579
+ | euclidean_ap | 0.9716 |
580
+ | max_accuracy | 0.8923 |
581
+ | max_accuracy_threshold | 10.6305 |
582
+ | max_f1 | 0.9231 |
583
+ | max_f1_threshold | 10.6305 |
584
+ | max_precision | 0.8571 |
585
+ | max_recall | 1.0 |
586
+ | **max_ap** | **0.9716** |
587
+
588
+ #### Binary Classification
589
+ * Dataset: `e5-cogcache-dev`
590
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
591
+
592
+ | Metric | Value |
593
+ |:-----------------------------|:-----------|
594
+ | cosine_accuracy | 0.8923 |
595
+ | cosine_accuracy_threshold | 0.7951 |
596
+ | cosine_f1 | 0.9231 |
597
+ | cosine_f1_threshold | 0.7486 |
598
+ | cosine_precision | 0.8571 |
599
+ | cosine_recall | 1.0 |
600
+ | cosine_ap | 0.9716 |
601
+ | dot_accuracy | 0.8923 |
602
+ | dot_accuracy_threshold | 0.7951 |
603
+ | dot_f1 | 0.9231 |
604
+ | dot_f1_threshold | 0.7486 |
605
+ | dot_precision | 0.8571 |
606
+ | dot_recall | 1.0 |
607
+ | dot_ap | 0.9716 |
608
+ | manhattan_accuracy | 0.8846 |
609
+ | manhattan_accuracy_threshold | 10.6305 |
610
+ | manhattan_f1 | 0.9171 |
611
+ | manhattan_f1_threshold | 10.6305 |
612
+ | manhattan_precision | 0.8557 |
613
+ | manhattan_recall | 0.9881 |
614
+ | manhattan_ap | 0.9702 |
615
+ | euclidean_accuracy | 0.8923 |
616
+ | euclidean_accuracy_threshold | 0.6402 |
617
+ | euclidean_f1 | 0.9231 |
618
+ | euclidean_f1_threshold | 0.709 |
619
+ | euclidean_precision | 0.8571 |
620
+ | euclidean_recall | 1.0 |
621
+ | euclidean_ap | 0.9716 |
622
+ | max_accuracy | 0.8923 |
623
+ | max_accuracy_threshold | 10.6305 |
624
+ | max_f1 | 0.9231 |
625
+ | max_f1_threshold | 10.6305 |
626
+ | max_precision | 0.8571 |
627
+ | max_recall | 1.0 |
628
+ | **max_ap** | **0.9716** |
629
+
630
+ <!--
631
+ ## Bias, Risks and Limitations
632
+
633
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
634
+ -->
635
+
636
+ <!--
637
+ ### Recommendations
638
+
639
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
640
+ -->
641
+
642
+ ## Training Details
643
+
644
+ ### Training Dataset
645
+
646
+ #### Unnamed Dataset
647
+
648
+
649
+ * Size: 2,000 training samples
650
+ * Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
651
+ * Approximate statistics based on the first 1000 samples:
652
+ | | label | sentence1 | sentence2 |
653
+ |:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
654
+ | type | int | string | string |
655
+ | details | <ul><li>0: ~55.10%</li><li>1: ~44.90%</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.24 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.29 tokens</li><li>max: 55 tokens</li></ul> |
656
+ * Samples:
657
+ | label | sentence1 | sentence2 |
658
+ |:---------------|:--------------------------------------------------|:-------------------------------------------------|
659
+ | <code>1</code> | <code>What are the ingredients of a pizza?</code> | <code>What are the ingredients of a pizza</code> |
660
+ | <code>1</code> | <code>What are the ingredients of a pizza?</code> | <code>What are the ingredients of pizza</code> |
661
+ | <code>1</code> | <code>What are the ingredients of a pizza?</code> | <code>What are ingredients of pizza</code> |
662
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
663
+
664
+ ### Evaluation Dataset
665
+
666
+ #### Unnamed Dataset
667
+
668
+
669
+ * Size: 130 evaluation samples
670
+ * Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
671
+ * Approximate statistics based on the first 1000 samples:
672
+ | | label | sentence1 | sentence2 |
673
+ |:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
674
+ | type | int | string | string |
675
+ | details | <ul><li>0: ~35.38%</li><li>1: ~64.62%</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.85 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.48 tokens</li><li>max: 22 tokens</li></ul> |
676
+ * Samples:
677
+ | label | sentence1 | sentence2 |
678
+ |:---------------|:--------------------------------------------------|:-------------------------------------------------|
679
+ | <code>1</code> | <code>What are the ingredients of a pizza?</code> | <code>What are the ingredients of a pizza</code> |
680
+ | <code>1</code> | <code>What are the ingredients of a pizza?</code> | <code>What are the ingredients of pizza</code> |
681
+ | <code>1</code> | <code>What are the ingredients of a pizza?</code> | <code>What are ingredients of pizza</code> |
682
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
683
+
684
+ ### Training Hyperparameters
685
+ #### Non-Default Hyperparameters
686
+
687
+ - `eval_strategy`: epoch
688
+ - `per_device_train_batch_size`: 16
689
+ - `per_device_eval_batch_size`: 16
690
+ - `num_train_epochs`: 6
691
+ - `warmup_ratio`: 0.1
692
+ - `batch_sampler`: no_duplicates
693
+
694
+ #### All Hyperparameters
695
+ <details><summary>Click to expand</summary>
696
+
697
+ - `overwrite_output_dir`: False
698
+ - `do_predict`: False
699
+ - `eval_strategy`: epoch
700
+ - `prediction_loss_only`: True
701
+ - `per_device_train_batch_size`: 16
702
+ - `per_device_eval_batch_size`: 16
703
+ - `per_gpu_train_batch_size`: None
704
+ - `per_gpu_eval_batch_size`: None
705
+ - `gradient_accumulation_steps`: 1
706
+ - `eval_accumulation_steps`: None
707
+ - `learning_rate`: 5e-05
708
+ - `weight_decay`: 0.0
709
+ - `adam_beta1`: 0.9
710
+ - `adam_beta2`: 0.999
711
+ - `adam_epsilon`: 1e-08
712
+ - `max_grad_norm`: 1.0
713
+ - `num_train_epochs`: 6
714
+ - `max_steps`: -1
715
+ - `lr_scheduler_type`: linear
716
+ - `lr_scheduler_kwargs`: {}
717
+ - `warmup_ratio`: 0.1
718
+ - `warmup_steps`: 0
719
+ - `log_level`: passive
720
+ - `log_level_replica`: warning
721
+ - `log_on_each_node`: True
722
+ - `logging_nan_inf_filter`: True
723
+ - `save_safetensors`: True
724
+ - `save_on_each_node`: False
725
+ - `save_only_model`: False
726
+ - `restore_callback_states_from_checkpoint`: False
727
+ - `no_cuda`: False
728
+ - `use_cpu`: False
729
+ - `use_mps_device`: False
730
+ - `seed`: 42
731
+ - `data_seed`: None
732
+ - `jit_mode_eval`: False
733
+ - `use_ipex`: False
734
+ - `bf16`: False
735
+ - `fp16`: False
736
+ - `fp16_opt_level`: O1
737
+ - `half_precision_backend`: auto
738
+ - `bf16_full_eval`: False
739
+ - `fp16_full_eval`: False
740
+ - `tf32`: None
741
+ - `local_rank`: 0
742
+ - `ddp_backend`: None
743
+ - `tpu_num_cores`: None
744
+ - `tpu_metrics_debug`: False
745
+ - `debug`: []
746
+ - `dataloader_drop_last`: False
747
+ - `dataloader_num_workers`: 0
748
+ - `dataloader_prefetch_factor`: None
749
+ - `past_index`: -1
750
+ - `disable_tqdm`: False
751
+ - `remove_unused_columns`: True
752
+ - `label_names`: None
753
+ - `load_best_model_at_end`: False
754
+ - `ignore_data_skip`: False
755
+ - `fsdp`: []
756
+ - `fsdp_min_num_params`: 0
757
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
758
+ - `fsdp_transformer_layer_cls_to_wrap`: None
759
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
760
+ - `deepspeed`: None
761
+ - `label_smoothing_factor`: 0.0
762
+ - `optim`: adamw_torch
763
+ - `optim_args`: None
764
+ - `adafactor`: False
765
+ - `group_by_length`: False
766
+ - `length_column_name`: length
767
+ - `ddp_find_unused_parameters`: None
768
+ - `ddp_bucket_cap_mb`: None
769
+ - `ddp_broadcast_buffers`: False
770
+ - `dataloader_pin_memory`: True
771
+ - `dataloader_persistent_workers`: False
772
+ - `skip_memory_metrics`: True
773
+ - `use_legacy_prediction_loop`: False
774
+ - `push_to_hub`: False
775
+ - `resume_from_checkpoint`: None
776
+ - `hub_model_id`: None
777
+ - `hub_strategy`: every_save
778
+ - `hub_private_repo`: False
779
+ - `hub_always_push`: False
780
+ - `gradient_checkpointing`: False
781
+ - `gradient_checkpointing_kwargs`: None
782
+ - `include_inputs_for_metrics`: False
783
+ - `eval_do_concat_batches`: True
784
+ - `fp16_backend`: auto
785
+ - `push_to_hub_model_id`: None
786
+ - `push_to_hub_organization`: None
787
+ - `mp_parameters`:
788
+ - `auto_find_batch_size`: False
789
+ - `full_determinism`: False
790
+ - `torchdynamo`: None
791
+ - `ray_scope`: last
792
+ - `ddp_timeout`: 1800
793
+ - `torch_compile`: False
794
+ - `torch_compile_backend`: None
795
+ - `torch_compile_mode`: None
796
+ - `dispatch_batches`: None
797
+ - `split_batches`: None
798
+ - `include_tokens_per_second`: False
799
+ - `include_num_input_tokens_seen`: False
800
+ - `neftune_noise_alpha`: None
801
+ - `optim_target_modules`: None
802
+ - `batch_eval_metrics`: False
803
+ - `batch_sampler`: no_duplicates
804
+ - `multi_dataset_batch_sampler`: proportional
805
+
806
+ </details>
807
+
808
+ ### Training Logs
809
+ | Epoch | Step | Training Loss | loss | e5-cogcache-dev_max_ap | quora-duplicates-dev_max_ap |
810
+ |:-----:|:----:|:-------------:|:------:|:----------------------:|:---------------------------:|
811
+ | 0 | 0 | - | - | - | 0.7430 |
812
+ | 1.0 | 125 | - | 0.4486 | - | 0.8547 |
813
+ | 2.0 | 250 | - | 0.2319 | - | 0.9373 |
814
+ | 3.0 | 375 | - | 0.1411 | - | 0.9634 |
815
+ | 4.0 | 500 | 0.2324 | 0.1785 | - | 0.9687 |
816
+ | 5.0 | 625 | - | 0.1681 | - | 0.9713 |
817
+ | 6.0 | 750 | - | 0.1477 | 0.9716 | 0.9716 |
818
+
819
+
820
+ ### Framework Versions
821
+ - Python: 3.10.12
822
+ - Sentence Transformers: 3.0.1
823
+ - Transformers: 4.41.2
824
+ - PyTorch: 2.1.2+cu121
825
+ - Accelerate: 0.32.1
826
+ - Datasets: 2.19.1
827
+ - Tokenizers: 0.19.1
828
+
829
+ ## Citation
830
+
831
+ ### BibTeX
832
+
833
+ #### Sentence Transformers
834
+ ```bibtex
835
+ @inproceedings{reimers-2019-sentence-bert,
836
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
837
+ author = "Reimers, Nils and Gurevych, Iryna",
838
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
839
+ month = "11",
840
+ year = "2019",
841
+ publisher = "Association for Computational Linguistics",
842
+ url = "https://arxiv.org/abs/1908.10084",
843
+ }
844
+ ```
845
+
846
+ <!--
847
+ ## Glossary
848
+
849
+ *Clearly define terms in order to be accessible across audiences.*
850
+ -->
851
+
852
+ <!--
853
+ ## Model Card Authors
854
+
855
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
856
+ -->
857
+
858
+ <!--
859
+ ## Model Card Contact
860
+
861
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
862
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bbbb452a9c9ef518cbf117264146d1c70d5bba40ad3f5627f57c53ae0e68360
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }