srinivasvl81
commited on
Commit
•
2fdab63
1
Parent(s):
47acde6
Uploading PPO trained agent - 2
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +19 -19
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 258.75 +/- 17.36
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe20291aee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe20291af70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe20291e040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe20291e0d0>", "_build": "<function ActorCriticPolicy._build at 0x7fe20291e160>", "forward": "<function ActorCriticPolicy.forward at 0x7fe20291e1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe20291e280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe20291e310>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe20291e3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe20291e430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe20291e4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe20291e550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe20291f380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681421824954353481, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPayryPpi26TuRbvGZvNTaVdVu6ftWotQAAgD8AAIA/Zt3JvLgWqLn41N47JBS6Nxb9Xzv2sAc2AACAPwAAgD9NYyU99lBzuu2u/LimG/Ozk4MGuwIiETgAAIA/AACAP5rijz1cwxi6jkeLuBdDibWOJ0a7coD0NAAAgD8AAIA/swIqvXEtRrkz3VC7mZ3aNxZh1DqLwwM6AACAPwAAgD8aYkC9j45UumrCEzvWKpW2Enc8u8nnKroAAIA/AACAP2aSHrzDdWu6diSbufBgtLWmzHA7MES1OAAAgD8AAIA/gB47PRKKXz6mYg68YENNvhGtiDyNgoa8AAAAAAAAAABNj109FAy/uqN1U7wzE2a2uNgUOQrQzTUAAIA/AACAP7Mc7r0p1Hi6pQbQO2WjfDiyIIC7jc2NuAAAgD8AAIA/c3QPvt7NUj+ge14+SCaEvinxjb3NM489AAAAAAAAAAAzQHG9uE6LufaY3LPzmTcu86qcOwlPoDMAAIA/AACAPxpgt71c40C6ehaUOx9QvrWchj47lESytAAAgD8AAIA/sy0rPcNxe7pKvvg7SmrStdozVbmib8O0AACAPwAAgD8zU7W8e2STunmcNbyXWpS2hTI2OxUZBjYAAIA/AACAPxpNa72Fs765+4WDufl9KzPYTrO7QvJjswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXB5rRgYJL0CUhpRSlIwBbJRNOgGMAXSUR0CRNcJD3M6jdX2UKGgGaAloD0MIGJgVivRzZECUhpRSlGgVTegDaBZHQJE25DPWxyJ1fZQoaAZoCWgPQwjgEKrU7MknwJSGlFKUaBVNMQFoFkdAkTcVfReC1HV9lChoBmgJaA9DCOp29pUHR2JAlIaUUpRoFU3oA2gWR0CRObpPykKvdX2UKGgGaAloD0MITkcAN4s0YECUhpRSlGgVTegDaBZHQJE8dG0/nnx1fZQoaAZoCWgPQwiOrz2zJANcQJSGlFKUaBVN6ANoFkdAkT3lBD5TInV9lChoBmgJaA9DCEj5SbVPrF5AlIaUUpRoFU3oA2gWR0CRPmtfG+9KdX2UKGgGaAloD0MIAg02dR5lYUCUhpRSlGgVTegDaBZHQJE/TEAHVwx1fZQoaAZoCWgPQwi4rMJmgNBTQJSGlFKUaBVN6ANoFkdAkUQD0HyEtnV9lChoBmgJaA9DCLUV+8vuUWdAlIaUUpRoFU3oA2gWR0CRSIg4wRGudX2UKGgGaAloD0MIC34bYrxgZUCUhpRSlGgVTegDaBZHQJFKEupS75F1fZQoaAZoCWgPQwhfzmxX6ENbQJSGlFKUaBVN6ANoFkdAkU+WDDjzZ3V9lChoBmgJaA9DCBpTsMbZ4WBAlIaUUpRoFU3oA2gWR0CRUERTjvNNdX2UKGgGaAloD0MIkncOZagWWkCUhpRSlGgVTegDaBZHQJFivKifxtp1fZQoaAZoCWgPQwjuBzwwgApdQJSGlFKUaBVN6ANoFkdAkXmoSQHRkXV9lChoBmgJaA9DCM1zRL5LYWVAlIaUUpRoFU3oA2gWR0CRi6NH6MzedX2UKGgGaAloD0MIIGPuWsJxZECUhpRSlGgVTegDaBZHQJGMyzHCGet1fZQoaAZoCWgPQwh8mShC6kNcQJSGlFKUaBVN6ANoFkdAkY5x8c+7lXV9lChoBmgJaA9DCMwmwLD8x2VAlIaUUpRoFU3oA2gWR0CRjsAbQ1JldX2UKGgGaAloD0MISnoYWh0yZECUhpRSlGgVTegDaBZHQJGSiR9w3o91fZQoaAZoCWgPQwhftp22RktYQJSGlFKUaBVN6ANoFkdAkZaNWU8mr3V9lChoBmgJaA9DCCeIug/AX2ZAlIaUUpRoFU3oA2gWR0CRmB+De0ojdX2UKGgGaAloD0MIH/MBgc5bXkCUhpRSlGgVTegDaBZHQJGYocABDG91fZQoaAZoCWgPQwjOGryvSgBiQJSGlFKUaBVN6ANoFkdAkZl87ZFoc3V9lChoBmgJaA9DCDXuzW+YkmBAlIaUUpRoFU3oA2gWR0CRnerzXjEOdX2UKGgGaAloD0MIeZCeIgf3ZkCUhpRSlGgVTegDaBZHQJGiF8rqdH51fZQoaAZoCWgPQwiA7zZvHBFgQJSGlFKUaBVN6ANoFkdAkaN6tga3qnV9lChoBmgJaA9DCLppM07DGmVAlIaUUpRoFU3oA2gWR0CRp3UkfLcLdX2UKGgGaAloD0MIWMfxQyUtY0CUhpRSlGgVTegDaBZHQJGn6xGDtgN1fZQoaAZoCWgPQwj7yRgf5nxhQJSGlFKUaBVN6ANoFkdAkbUpkK/mDHV9lChoBmgJaA9DCCbjGMkehWNAlIaUUpRoFU3oA2gWR0CRu1/X5FgEdX2UKGgGaAloD0MIzH1yFKCKZkCUhpRSlGgVTegDaBZHQJHhjv6TGHZ1fZQoaAZoCWgPQwgj9Z7KabdjQJSGlFKUaBVN6ANoFkdAkeKepsGgSXV9lChoBmgJaA9DCMwk6gWfX1lAlIaUUpRoFU3oA2gWR0CR5Byq+8GtdX2UKGgGaAloD0MI61c6H54NY0CUhpRSlGgVTegDaBZHQJHkaLYPGyZ1fZQoaAZoCWgPQwhKfsSvWCBgQJSGlFKUaBVN6ANoFkdAkegPLTx5LXV9lChoBmgJaA9DCD7o2az602JAlIaUUpRoFU3oA2gWR0CR6/c+aBqcdX2UKGgGaAloD0MIcobijrdQYUCUhpRSlGgVTegDaBZHQJHtjftQbdd1fZQoaAZoCWgPQwgO9iaG5OZfQJSGlFKUaBVN6ANoFkdAke4OV5a/y3V9lChoBmgJaA9DCA5o6Qo2W2NAlIaUUpRoFU3oA2gWR0CR7t8lXzUadX2UKGgGaAloD0MIpHITtTScWkCUhpRSlGgVTegDaBZHQJHy2Z5Rjz91fZQoaAZoCWgPQwji6gCIOx1hQJSGlFKUaBVN6ANoFkdAkfbCnk1dgXV9lChoBmgJaA9DCKfmcoMhmGFAlIaUUpRoFU3oA2gWR0CR+Admg8KYdX2UKGgGaAloD0MIP47myMqHYkCUhpRSlGgVTegDaBZHQJH9OQ5myxB1fZQoaAZoCWgPQwixUGuad8hgQJSGlFKUaBVN6ANoFkdAkf3Z7PY4AHV9lChoBmgJaA9DCPPLYIxI42dAlIaUUpRoFU3oA2gWR0CSDuDU3GXHdX2UKGgGaAloD0MIxca8jjgaYUCUhpRSlGgVTegDaBZHQJIVU8U21lZ1fZQoaAZoCWgPQwhkIM8uX/ZiQJSGlFKUaBVN6ANoFkdAkjX4n0Cih3V9lChoBmgJaA9DCOlDF9S3WGBAlIaUUpRoFU3oA2gWR0CSNyci4axYdX2UKGgGaAloD0MIs3ixMETmYkCUhpRSlGgVTegDaBZHQJI41+5OJtV1fZQoaAZoCWgPQwhdhv90AzFfQJSGlFKUaBVN6ANoFkdAkjku+/QBxXV9lChoBmgJaA9DCHTtC+gFH2RAlIaUUpRoFU3oA2gWR0CSPVE5hjOLdX2UKGgGaAloD0MIgh5q2zBBY0CUhpRSlGgVTegDaBZHQJJBr9KmKqJ1fZQoaAZoCWgPQwjnc+52vahfQJSGlFKUaBVN6ANoFkdAkkO+yRjjJnV9lChoBmgJaA9DCBlXXByV2GJAlIaUUpRoFU3oA2gWR0CSRIFuvUz9dX2UKGgGaAloD0MI93R1x+INZECUhpRSlGgVTegDaBZHQJJFVxzaK1p1fZQoaAZoCWgPQwiG5jqNtIdiQJSGlFKUaBVN6ANoFkdAkklo6Kcd53V9lChoBmgJaA9DCHAlOzYCBTBAlIaUUpRoFUvGaBZHQJJJlTisGPh1fZQoaAZoCWgPQwjDf7qBgjxkQJSGlFKUaBVN6ANoFkdAkk1LbpNbknV9lChoBmgJaA9DCAlTlEtji2FAlIaUUpRoFU3oA2gWR0CSTow3o9s8dX2UKGgGaAloD0MIpItNK4W2RECUhpRSlGgVS+BoFkdAkk7Aam4y5HV9lChoBmgJaA9DCPHXZI16yWFAlIaUUpRoFU3oA2gWR0CSUhsi0OVgdX2UKGgGaAloD0MIOKClK1gDZECUhpRSlGgVTegDaBZHQJJShX5nDix1fZQoaAZoCWgPQwgTfT7KiBpRQJSGlFKUaBVNCAFoFkdAklb+D8LronV9lChoBmgJaA9DCCi5wyYyl2BAlIaUUpRoFU3oA2gWR0CSXo3FDOTrdX2UKGgGaAloD0MIFhQGZZrqYkCUhpRSlGgVTegDaBZHQJJk03rD6311fZQoaAZoCWgPQwjrxVBONIBhQJSGlFKUaBVN6ANoFkdAkolhrrPdEnV9lChoBmgJaA9DCHiY9s39W2JAlIaUUpRoFU3oA2gWR0CSiimVqveQdX2UKGgGaAloD0MIIhlybD18XUCUhpRSlGgVTegDaBZHQJKLUiqyWzF1fZQoaAZoCWgPQwg6dHreDfFhQJSGlFKUaBVN6ANoFkdAkouDtsvZiHV9lChoBmgJaA9DCEloy7mUTmJAlIaUUpRoFU3oA2gWR0CSkTBLPD51dX2UKGgGaAloD0MI6PS8GwsYZkCUhpRSlGgVTegDaBZHQJKTPaqS5iF1fZQoaAZoCWgPQwirB8xDJnpkQJSGlFKUaBVN6ANoFkdAkpQ3/xUedXV9lChoBmgJaA9DCGZOl8XEHWJAlIaUUpRoFU3oA2gWR0CSmUEytV7ydX2UKGgGaAloD0MIFTduMT+fJ8CUhpRSlGgVS7hoFkdAkp3p5u63AnV9lChoBmgJaA9DCK/OMSB7XGJAlIaUUpRoFU3oA2gWR0CSngrhisnzdX2UKGgGaAloD0MIMBLacq5LY0CUhpRSlGgVTegDaBZHQJKfeKFZgXx1fZQoaAZoCWgPQwgGED6UaERiQJSGlFKUaBVN6ANoFkdAkp+0haC+UXV9lChoBmgJaA9DCJolAWrqi2FAlIaUUpRoFU3oA2gWR0CSouxfv4M4dX2UKGgGaAloD0MIQnkfR/PtZECUhpRSlGgVTegDaBZHQJKjUriEQGx1fZQoaAZoCWgPQwijdVQ1QYteQJSGlFKUaBVN6ANoFkdAkqiiOmzjWHV9lChoBmgJaA9DCCyazk4GX0ZAlIaUUpRoFUvlaBZHQJKtGGO+7Dl1fZQoaAZoCWgPQwh1VaAWg0ljQJSGlFKUaBVN6ANoFkdAkrKUal1r7HV9lChoBmgJaA9DCEvpmV7iumJAlIaUUpRoFU3oA2gWR0CSuZk56t1ZdX2UKGgGaAloD0MIXaeRlkrPYUCUhpRSlGgVTegDaBZHQJLdCjbi6xx1fZQoaAZoCWgPQwjmH32TJtlgQJSGlFKUaBVN6ANoFkdAkt29MXaakXV9lChoBmgJaA9DCJJ3DmWouGRAlIaUUpRoFU3oA2gWR0CS3tCT2WY4dX2UKGgGaAloD0MIz0iERjBZZkCUhpRSlGgVTegDaBZHQJLfBpVS4vx1fZQoaAZoCWgPQwhgPlkxXDhfQJSGlFKUaBVN6ANoFkdAkuavZZjhDXV9lChoBmgJaA9DCIyd8BIciGFAlIaUUpRoFU3oA2gWR0CS6ubobGWEdX2UKGgGaAloD0MIj8L1KFzGZECUhpRSlGgVTegDaBZHQJLxiZ6Uqx11fZQoaAZoCWgPQwi9VGzMayJkQJSGlFKUaBVN6ANoFkdAkvXMx0uDjHV9lChoBmgJaA9DCNvBiH2CX2BAlIaUUpRoFU3oA2gWR0CS9emz0HyFdX2UKGgGaAloD0MIcv27PvNUYUCUhpRSlGgVTegDaBZHQJL3cmJFb3Z1fZQoaAZoCWgPQwg/5ZgsbmpjQJSGlFKUaBVN6ANoFkdAkvsxsEaESXV9lChoBmgJaA9DCGnGoulsI2VAlIaUUpRoFU3oA2gWR0CS+6dV/+bWdX2UKGgGaAloD0MILubnhqbwYECUhpRSlGgVTegDaBZHQJMAttHhCMR1fZQoaAZoCWgPQwi2LF+X4f5gQJSGlFKUaBVN6ANoFkdAkwRe32EkB3V9lChoBmgJaA9DCDpcqz1scWNAlIaUUpRoFU3oA2gWR0CTCJRXfZVXdX2UKGgGaAloD0MI14aKcf7JYUCUhpRSlGgVTegDaBZHQJMPA580DU51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24cfe1baf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24cfe1bb80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24cfe1bc10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24cfe1bca0>", "_build": "<function ActorCriticPolicy._build at 0x7f24cfe1bd30>", "forward": "<function ActorCriticPolicy.forward at 0x7f24cfe1bdc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24cfe1be50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24cfe1bee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f24cfe1bf70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24cfe25040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24cfe250d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24cfe25160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f24cfe23900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681567889317589505, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADMJGrz2SGO6YqvROsSyZzVkkDO749n0uQAAgD8AAIA/JqSJPWO5Yj0VXJC+xGCivtvKm71dqse9AAAAAAAAAABNf4G9I+E1PWYYGz2m30e+tBEEvNuuEL0AAAAAAAAAAGaRET2FA9u56uPkuub2BrYYwrE6qosDOgAAgD8AAIA/tvSwPl4gcT8NqDA9LAnyvnE31j7a1Cm+AAAAAAAAAADziJk9hWPtuTi0dTqiyg42AooDOUHIjbkAAIA/AACAP2bkFT2uBYe6HobcOy0oLjh+aFA7YTAwuAAAgD8AAIA/wKy+PV8tRz5wT/y9mVidvpR/KD2iRIM9AAAAAAAAAABmBkg6Urj0ueDrnDirXxyyU5Slu1tUtrcAAIA/AACAP5pZZDrDqVW6YkabtsSiWLFdoI257iG5NQAAgD8AAIA/gE5mPa1B4j7dJaG9cCmLvvfDHz3dWn+9AAAAAAAAAADN7Ig7e+KcuqOY6Tmtsv81BoS6uaXkBrkAAIA/AACAP8Vtm75dDnA/HbA2vp4t5b4zevq+Bt2NPQAAAAAAAAAAzQyUPBTks7pc9hG4wecVswO/ibh2wCY3AACAPwAAgD9mID08Hy2puVbShLvvbZU4TcqXuzxrrjkAAIA/AACAP5rxSr06cls/5m20PWGyyb5+KRG97w0lPQAAAAAAAAAAM5L1POFsmbrUtZm7mbM8ONYxxbr57zY3AACAPwAAgD8a06C9mzLXPoH+QD4DxI2+51O6PG4xSj0AAAAAAAAAAAA4LbwUOKK66meVuq8+f7XbuSK6NR6sOQAAgD8AAIA/JkeDvRQCgbqG5ic4KxJoM6hb/ToDekK3AACAPwAAgD8z0Vu8rlmEupnFNLhL2Cez6g3DOkp8UjcAAIA/AACAPzO2jj32OH+6eNO0u08k9De8iGe7MEAJtgAAgD8AAIA/mraMvJ8irTydyPm9pmkXvmsYSb7uYUc/AACAPwAAAAAafhW9j94oumATejrc2ZQ1Ws06O0qTk7kAAIA/AACAP9qkib2ueZq6NkmNuzQwpraT5XS4kgOjOgAAgD8AAIA/zaUZPVwxfD+KE4U6Tqi4vuCgfT32h5M9AAAAAAAAAAAa5Py9bZKnPmQrjj4Fkpq+fiECPqDumb0AAAAAAAAAAAAYKbyPpma6uyXYu2MDcLYub3m6eMHcNQAAgD8AAIA/mtEIvMMxWLqvvr22cxC7sdoI4Tnait41AACAPwAAgD8Ahu689jRiuqu4LrurGGS1rnZSug48SToAAIA/AACAP5rPvD3IEKK8mu2PvW2M8zwOpRI+zYO8vQAAgD8AAAAAALCyOuFQoLoWm0i7joYKOFyMr7ogwde1AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIequuQ/UHcECUhpRSlIwBbJRNlQGMAXSUR0CO2BsDW9UTdX2UKGgGaAloD0MId554zpbGY0CUhpRSlGgVTegDaBZHQI7debExZdR1fZQoaAZoCWgPQwh9ryE4rkpnQJSGlFKUaBVN6ANoFkdAjt3HyVfNRnV9lChoBmgJaA9DCOFFX0EaKW9AlIaUUpRoFU0WAWgWR0CO3whSLqD9dX2UKGgGaAloD0MICvfKvNUBb0CUhpRSlGgVTS0DaBZHQI7mi+QEIPd1fZQoaAZoCWgPQwjSUnk7QqdxQJSGlFKUaBVNlQJoFkdAjuut5le4TnV9lChoBmgJaA9DCC3Pg7uz3mZAlIaUUpRoFU3oA2gWR0CO7j9lVcUudX2UKGgGaAloD0MI9fV8zfLScUCUhpRSlGgVTUUDaBZHQI7u6OmzjWF1fZQoaAZoCWgPQwiQaAJFLAhjQJSGlFKUaBVN6ANoFkdAju/hY/3WWnV9lChoBmgJaA9DCD5eSIcHeWxAlIaUUpRoFU32AWgWR0CO8AejEehgdX2UKGgGaAloD0MIuCIxQc1rc0CUhpRSlGgVTdACaBZHQI7x52ll9Sd1fZQoaAZoCWgPQwgBo8ubg+ZxQJSGlFKUaBVL+2gWR0CO86FsYVIqdX2UKGgGaAloD0MIWf0RhkFZcUCUhpRSlGgVTUQCaBZHQI70zFCLMs91fZQoaAZoCWgPQwivl6YIcFBnQJSGlFKUaBVN6ANoFkdAjvvvB7/n4nV9lChoBmgJaA9DCAPv5NOj1HFAlIaUUpRoFU2uAmgWR0CO/Y1UEPlNdX2UKGgGaAloD0MI29styUElcECUhpRSlGgVTZMDaBZHQI7/jmnwXqJ1fZQoaAZoCWgPQwj6tfXTf7JxQJSGlFKUaBVNCANoFkdAjwVv5YYBNnV9lChoBmgJaA9DCAqA8QwauG9AlIaUUpRoFU0jAWgWR0CPDYrn1WbPdX2UKGgGaAloD0MI1F+vsGANckCUhpRSlGgVTS4BaBZHQI8dkt/WlM11fZQoaAZoCWgPQwhAvoQKjl5nQJSGlFKUaBVN6ANoFkdAjx4u0svqT3V9lChoBmgJaA9DCIRLx5xnOnNAlIaUUpRoFU1rAWgWR0CPMEzVMEiddX2UKGgGaAloD0MIMlhxqnXNcUCUhpRSlGgVTUYCaBZHQI85030f5k91fZQoaAZoCWgPQwiHFtnO94JvQJSGlFKUaBVNQwJoFkdAjzoj/uLJjnV9lChoBmgJaA9DCKDejJovhnFAlIaUUpRoFU0iAmgWR0CPOvUWl/H6dX2UKGgGaAloD0MIamgDsAG2ckCUhpRSlGgVTQ8CaBZHQI8+xnanJkp1fZQoaAZoCWgPQwiu1R72QrNvQJSGlFKUaBVNrwJoFkdAj0eDwH7gsXV9lChoBmgJaA9DCAJKQ43C72FAlIaUUpRoFU3oA2gWR0CPSzR4yGi6dX2UKGgGaAloD0MI2LlpM87jZkCUhpRSlGgVTegDaBZHQI9QQ5YHPeJ1fZQoaAZoCWgPQwjyejApPqhxQJSGlFKUaBVN+AJoFkdAj1GkLH+6y3V9lChoBmgJaA9DCCrJOhxdq25AlIaUUpRoFU1yA2gWR0CPYecdYGMXdX2UKGgGaAloD0MIRiQKLeuVZkCUhpRSlGgVTegDaBZHQI9kOymhufp1fZQoaAZoCWgPQwiGVFG8yvBxQJSGlFKUaBVN1QFoFkdAj6rnf/FR53V9lChoBmgJaA9DCHtLOV9suG9AlIaUUpRoFU2MA2gWR0CPrid1+y7gdX2UKGgGaAloD0MI+yDLgonwa0CUhpRSlGgVTWoCaBZHQI+0eYF7laN1fZQoaAZoCWgPQwi+LsN/ug9BQJSGlFKUaBVL92gWR0CPtPrqt5lfdX2UKGgGaAloD0MI6j4AqU2ZX0CUhpRSlGgVTegDaBZHQI+2XGn4wh51fZQoaAZoCWgPQwiNfcnGA7twQJSGlFKUaBVNkAJoFkdAj7ZlAu7HyXV9lChoBmgJaA9DCAhVavbAh21AlIaUUpRoFU1zAmgWR0CPuLaYeDFqdX2UKGgGaAloD0MI/YSzW0t2cECUhpRSlGgVTRoBaBZHQI+9cYsNDtx1fZQoaAZoCWgPQwgH8BZIEIVwQJSGlFKUaBVNqgJoFkdAj73tZNfw7XV9lChoBmgJaA9DCL1TAfd8CHFAlIaUUpRoFU3zAWgWR0CPvsogmqo7dX2UKGgGaAloD0MIhetRuJ7kZ0CUhpRSlGgVTegDaBZHQI/HKrLhaTx1fZQoaAZoCWgPQwjkFB3JZd1sQJSGlFKUaBVNnQNoFkdAj8ly/9Hc13V9lChoBmgJaA9DCF2j5UCPQ2NAlIaUUpRoFU3oA2gWR0CPyXBSk0rLdX2UKGgGaAloD0MIz4O7s3bZY0CUhpRSlGgVTegDaBZHQI/SahcqvvB1fZQoaAZoCWgPQwgxlX7CGRdxQJSGlFKUaBVNRgFoFkdAj9N9itq59XV9lChoBmgJaA9DCMYWghyU6HFAlIaUUpRoFU1PAWgWR0CP06sH0K7adX2UKGgGaAloD0MI220Xmmvyb0CUhpRSlGgVTegCaBZHQI/VJmbsniN1fZQoaAZoCWgPQwhLdmwE4k1vQJSGlFKUaBVNOQNoFkdAj9YIVVPva3V9lChoBmgJaA9DCNrFNNP96nFAlIaUUpRoFU14AWgWR0CP1g2RaHKwdX2UKGgGaAloD0MITmTmApcOb0CUhpRSlGgVTTYCaBZHQI/WlfqoqCp1fZQoaAZoCWgPQwhu/InKxj9zQJSGlFKUaBVL2mgWR0CP2RhYNiH7dX2UKGgGaAloD0MI6kDWU6sUc0CUhpRSlGgVTRMBaBZHQI/ZVxQzk6t1fZQoaAZoCWgPQwje40wT9tNyQJSGlFKUaBVNmANoFkdAj9l5WBBiTnV9lChoBmgJaA9DCCVBuAIK+F9AlIaUUpRoFU3oA2gWR0CP3Idsi0OWdX2UKGgGaAloD0MIQni0cQQEcECUhpRSlGgVS+5oFkdAj93lkhA4XHV9lChoBmgJaA9DCFH4bB0ciktAlIaUUpRoFUvJaBZHQI/l4TqSowV1fZQoaAZoCWgPQwgDeAskqCpwQJSGlFKUaBVNbAFoFkdAj+gvIn0CinV9lChoBmgJaA9DCLqCbcSTSHBAlIaUUpRoFU1DAWgWR0CP6EqjrRjSdX2UKGgGaAloD0MIyeU/pN9/Z0CUhpRSlGgVTegDaBZHQI/qu0u14Ph1fZQoaAZoCWgPQwgxlumXiO9wQJSGlFKUaBVNNQFoFkdAj+q8iwB5o3V9lChoBmgJaA9DCP7V477VI3BAlIaUUpRoFU3UAmgWR0CP7J+ZPVNIdX2UKGgGaAloD0MIih74GKyWcUCUhpRSlGgVTRkBaBZHQI/u39ehPCV1fZQoaAZoCWgPQwgVqpuLv2FCQJSGlFKUaBVL4GgWR0CP87hm5DqodX2UKGgGaAloD0MIUu+pnPbdbUCUhpRSlGgVTZMCaBZHQI/0Sw0O3Dx1fZQoaAZoCWgPQwgn2lVI+ZFMQJSGlFKUaBVLzWgWR0CP9PtVJcxCdX2UKGgGaAloD0MInj9tVKfiYUCUhpRSlGgVTegDaBZHQI/2powmE5B1fZQoaAZoCWgPQwjKw0Kt6bZuQJSGlFKUaBVNBAFoFkdAj/c7RfF72XV9lChoBmgJaA9DCL+ByY0iFm1AlIaUUpRoFU2NAWgWR0CP92FmnO0LdX2UKGgGaAloD0MIvoOfOAB6ckCUhpRSlGgVTbMBaBZHQI/3hSFXaJ11fZQoaAZoCWgPQwjSx3xAoFhyQJSGlFKUaBVNoQFoFkdAj/l/ustCiXV9lChoBmgJaA9DCLMJMCx/uWRAlIaUUpRoFU3oA2gWR0CP+bd2Pkq+dX2UKGgGaAloD0MIhjsXRnoAcUCUhpRSlGgVTbcCaBZHQI/62W4Vh1F1fZQoaAZoCWgPQwhkAn6N5B9wQJSGlFKUaBVNAwJoFkdAj/tfkvK2a3V9lChoBmgJaA9DCH0G1JsRhnBAlIaUUpRoFU3yAmgWR0CP+6koF3Y+dX2UKGgGaAloD0MISS9q96tvcUCUhpRSlGgVTX0BaBZHQI/9tIAfdRB1fZQoaAZoCWgPQwgaa39ne4dyQJSGlFKUaBVNEgJoFkdAkAEmhVU+93V9lChoBmgJaA9DCAFNhA3PsG1AlIaUUpRoFU1sAmgWR0CQBV/MW43FdX2UKGgGaAloD0MIEsE4uLRWcECUhpRSlGgVTRABaBZHQJAHAbOu7pV1fZQoaAZoCWgPQwgb1elA1mlFQJSGlFKUaBVLxGgWR0CQCHp5eJHidX2UKGgGaAloD0MIyqSGNgB2VUCUhpRSlGgVS+JoFkdAkAnPSYw7DHV9lChoBmgJaA9DCJVE9kEWEHNAlIaUUpRoFU3wAWgWR0CQDpI4VARkdX2UKGgGaAloD0MIv2INF3l0c0CUhpRSlGgVTRkBaBZHQJAPVeBxxT91fZQoaAZoCWgPQwgQPpRoid1yQJSGlFKUaBVN/gFoFkdAkBAZxvNu+HV9lChoBmgJaA9DCHbdW5EY0HFAlIaUUpRoFU1JAWgWR0CQEDamXPZ7dX2UKGgGaAloD0MIk+F4PsONckCUhpRSlGgVTSUBaBZHQJATS6NEPUd1fZQoaAZoCWgPQwjXTL7ZZqVvQJSGlFKUaBVNDgJoFkdAkBSSwbEP2HV9lChoBmgJaA9DCEHw+PbuF3FAlIaUUpRoFU3LA2gWR0CQGAxA0KqodX2UKGgGaAloD0MIvi7Df3qzckCUhpRSlGgVTVgCaBZHQJAaettALRd1fZQoaAZoCWgPQwhRLo1fOCtzQJSGlFKUaBVNxgFoFkdAkBqSquKXOXV9lChoBmgJaA9DCDmX4qqyuzJAlIaUUpRoFUvWaBZHQJAbUUbkwN91fZQoaAZoCWgPQwgdHOxNzChxQJSGlFKUaBVN4wFoFkdAkBtpB1LamHV9lChoBmgJaA9DCHdM3ZUdzHFAlIaUUpRoFU1cAWgWR0CQHB1D0DlpdX2UKGgGaAloD0MI16VG6OdmckCUhpRSlGgVTVYCaBZHQJAeQ4S6DoR1fZQoaAZoCWgPQwjRdeEHJ8ZxQJSGlFKUaBVNvwJoFkdAkB/WZE2HcnV9lChoBmgJaA9DCEZ6UbvfF3FAlIaUUpRoFU2mAWgWR0CQICDfFaStdX2UKGgGaAloD0MIFNBE2DCscUCUhpRSlGgVTVkCaBZHQJAinCYTkAB1fZQoaAZoCWgPQwhosRTJFw1wQJSGlFKUaBVNMAFoFkdAkCM9Xo1UEXV9lChoBmgJaA9DCGb4TzdQ93JAlIaUUpRoFU3HAmgWR0CQI9Ea2nbZdX2UKGgGaAloD0MI6Q33kZvbcUCUhpRSlGgVTd0BaBZHQJAkFOUMXrN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:049ab2825eb1a0f2e3fc66654b1317575a58f685cc197cd8f6753005742765fa
|
3 |
+
size 148083
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,7 +26,7 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
@@ -35,11 +35,11 @@
|
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_episode_starts": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
42 |
-
":serialized:": "
|
43 |
},
|
44 |
"_last_original_obs": null,
|
45 |
"_episode_num": 0,
|
@@ -49,13 +49,13 @@
|
|
49 |
"_stats_window_size": 100,
|
50 |
"ep_info_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
-
":serialized:": "
|
53 |
},
|
54 |
"ep_success_buffer": {
|
55 |
":type:": "<class 'collections.deque'>",
|
56 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
},
|
58 |
-
"_n_updates":
|
59 |
"observation_space": {
|
60 |
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
@@ -77,7 +77,7 @@
|
|
77 |
"dtype": "int64",
|
78 |
"_np_random": null
|
79 |
},
|
80 |
-
"n_envs":
|
81 |
"n_steps": 1024,
|
82 |
"gamma": 0.999,
|
83 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f24cfe1baf0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24cfe1bb80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24cfe1bc10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24cfe1bca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f24cfe1bd30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f24cfe1bdc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24cfe1be50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24cfe1bee0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f24cfe1bf70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24cfe25040>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24cfe250d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24cfe25160>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f24cfe23900>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1681567889317589505,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
|
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADMJGrz2SGO6YqvROsSyZzVkkDO749n0uQAAgD8AAIA/JqSJPWO5Yj0VXJC+xGCivtvKm71dqse9AAAAAAAAAABNf4G9I+E1PWYYGz2m30e+tBEEvNuuEL0AAAAAAAAAAGaRET2FA9u56uPkuub2BrYYwrE6qosDOgAAgD8AAIA/tvSwPl4gcT8NqDA9LAnyvnE31j7a1Cm+AAAAAAAAAADziJk9hWPtuTi0dTqiyg42AooDOUHIjbkAAIA/AACAP2bkFT2uBYe6HobcOy0oLjh+aFA7YTAwuAAAgD8AAIA/wKy+PV8tRz5wT/y9mVidvpR/KD2iRIM9AAAAAAAAAABmBkg6Urj0ueDrnDirXxyyU5Slu1tUtrcAAIA/AACAP5pZZDrDqVW6YkabtsSiWLFdoI257iG5NQAAgD8AAIA/gE5mPa1B4j7dJaG9cCmLvvfDHz3dWn+9AAAAAAAAAADN7Ig7e+KcuqOY6Tmtsv81BoS6uaXkBrkAAIA/AACAP8Vtm75dDnA/HbA2vp4t5b4zevq+Bt2NPQAAAAAAAAAAzQyUPBTks7pc9hG4wecVswO/ibh2wCY3AACAPwAAgD9mID08Hy2puVbShLvvbZU4TcqXuzxrrjkAAIA/AACAP5rxSr06cls/5m20PWGyyb5+KRG97w0lPQAAAAAAAAAAM5L1POFsmbrUtZm7mbM8ONYxxbr57zY3AACAPwAAgD8a06C9mzLXPoH+QD4DxI2+51O6PG4xSj0AAAAAAAAAAAA4LbwUOKK66meVuq8+f7XbuSK6NR6sOQAAgD8AAIA/JkeDvRQCgbqG5ic4KxJoM6hb/ToDekK3AACAPwAAgD8z0Vu8rlmEupnFNLhL2Cez6g3DOkp8UjcAAIA/AACAPzO2jj32OH+6eNO0u08k9De8iGe7MEAJtgAAgD8AAIA/mraMvJ8irTydyPm9pmkXvmsYSb7uYUc/AACAPwAAAAAafhW9j94oumATejrc2ZQ1Ws06O0qTk7kAAIA/AACAP9qkib2ueZq6NkmNuzQwpraT5XS4kgOjOgAAgD8AAIA/zaUZPVwxfD+KE4U6Tqi4vuCgfT32h5M9AAAAAAAAAAAa5Py9bZKnPmQrjj4Fkpq+fiECPqDumb0AAAAAAAAAAAAYKbyPpma6uyXYu2MDcLYub3m6eMHcNQAAgD8AAIA/mtEIvMMxWLqvvr22cxC7sdoI4Tnait41AACAPwAAgD8Ahu689jRiuqu4LrurGGS1rnZSug48SToAAIA/AACAP5rPvD3IEKK8mu2PvW2M8zwOpRI+zYO8vQAAgD8AAAAAALCyOuFQoLoWm0i7joYKOFyMr7ogwde1AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
39 |
},
|
40 |
"_last_episode_starts": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
43 |
},
|
44 |
"_last_original_obs": null,
|
45 |
"_episode_num": 0,
|
|
|
49 |
"_stats_window_size": 100,
|
50 |
"ep_info_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIequuQ/UHcECUhpRSlIwBbJRNlQGMAXSUR0CO2BsDW9UTdX2UKGgGaAloD0MId554zpbGY0CUhpRSlGgVTegDaBZHQI7debExZdR1fZQoaAZoCWgPQwh9ryE4rkpnQJSGlFKUaBVN6ANoFkdAjt3HyVfNRnV9lChoBmgJaA9DCOFFX0EaKW9AlIaUUpRoFU0WAWgWR0CO3whSLqD9dX2UKGgGaAloD0MICvfKvNUBb0CUhpRSlGgVTS0DaBZHQI7mi+QEIPd1fZQoaAZoCWgPQwjSUnk7QqdxQJSGlFKUaBVNlQJoFkdAjuut5le4TnV9lChoBmgJaA9DCC3Pg7uz3mZAlIaUUpRoFU3oA2gWR0CO7j9lVcUudX2UKGgGaAloD0MI9fV8zfLScUCUhpRSlGgVTUUDaBZHQI7u6OmzjWF1fZQoaAZoCWgPQwiQaAJFLAhjQJSGlFKUaBVN6ANoFkdAju/hY/3WWnV9lChoBmgJaA9DCD5eSIcHeWxAlIaUUpRoFU32AWgWR0CO8AejEehgdX2UKGgGaAloD0MIuCIxQc1rc0CUhpRSlGgVTdACaBZHQI7x52ll9Sd1fZQoaAZoCWgPQwgBo8ubg+ZxQJSGlFKUaBVL+2gWR0CO86FsYVIqdX2UKGgGaAloD0MIWf0RhkFZcUCUhpRSlGgVTUQCaBZHQI70zFCLMs91fZQoaAZoCWgPQwivl6YIcFBnQJSGlFKUaBVN6ANoFkdAjvvvB7/n4nV9lChoBmgJaA9DCAPv5NOj1HFAlIaUUpRoFU2uAmgWR0CO/Y1UEPlNdX2UKGgGaAloD0MI29styUElcECUhpRSlGgVTZMDaBZHQI7/jmnwXqJ1fZQoaAZoCWgPQwj6tfXTf7JxQJSGlFKUaBVNCANoFkdAjwVv5YYBNnV9lChoBmgJaA9DCAqA8QwauG9AlIaUUpRoFU0jAWgWR0CPDYrn1WbPdX2UKGgGaAloD0MI1F+vsGANckCUhpRSlGgVTS4BaBZHQI8dkt/WlM11fZQoaAZoCWgPQwhAvoQKjl5nQJSGlFKUaBVN6ANoFkdAjx4u0svqT3V9lChoBmgJaA9DCIRLx5xnOnNAlIaUUpRoFU1rAWgWR0CPMEzVMEiddX2UKGgGaAloD0MIMlhxqnXNcUCUhpRSlGgVTUYCaBZHQI85030f5k91fZQoaAZoCWgPQwiHFtnO94JvQJSGlFKUaBVNQwJoFkdAjzoj/uLJjnV9lChoBmgJaA9DCKDejJovhnFAlIaUUpRoFU0iAmgWR0CPOvUWl/H6dX2UKGgGaAloD0MIamgDsAG2ckCUhpRSlGgVTQ8CaBZHQI8+xnanJkp1fZQoaAZoCWgPQwiu1R72QrNvQJSGlFKUaBVNrwJoFkdAj0eDwH7gsXV9lChoBmgJaA9DCAJKQ43C72FAlIaUUpRoFU3oA2gWR0CPSzR4yGi6dX2UKGgGaAloD0MI2LlpM87jZkCUhpRSlGgVTegDaBZHQI9QQ5YHPeJ1fZQoaAZoCWgPQwjyejApPqhxQJSGlFKUaBVN+AJoFkdAj1GkLH+6y3V9lChoBmgJaA9DCCrJOhxdq25AlIaUUpRoFU1yA2gWR0CPYecdYGMXdX2UKGgGaAloD0MIRiQKLeuVZkCUhpRSlGgVTegDaBZHQI9kOymhufp1fZQoaAZoCWgPQwiGVFG8yvBxQJSGlFKUaBVN1QFoFkdAj6rnf/FR53V9lChoBmgJaA9DCHtLOV9suG9AlIaUUpRoFU2MA2gWR0CPrid1+y7gdX2UKGgGaAloD0MI+yDLgonwa0CUhpRSlGgVTWoCaBZHQI+0eYF7laN1fZQoaAZoCWgPQwi+LsN/ug9BQJSGlFKUaBVL92gWR0CPtPrqt5lfdX2UKGgGaAloD0MI6j4AqU2ZX0CUhpRSlGgVTegDaBZHQI+2XGn4wh51fZQoaAZoCWgPQwiNfcnGA7twQJSGlFKUaBVNkAJoFkdAj7ZlAu7HyXV9lChoBmgJaA9DCAhVavbAh21AlIaUUpRoFU1zAmgWR0CPuLaYeDFqdX2UKGgGaAloD0MI/YSzW0t2cECUhpRSlGgVTRoBaBZHQI+9cYsNDtx1fZQoaAZoCWgPQwgH8BZIEIVwQJSGlFKUaBVNqgJoFkdAj73tZNfw7XV9lChoBmgJaA9DCL1TAfd8CHFAlIaUUpRoFU3zAWgWR0CPvsogmqo7dX2UKGgGaAloD0MIhetRuJ7kZ0CUhpRSlGgVTegDaBZHQI/HKrLhaTx1fZQoaAZoCWgPQwjkFB3JZd1sQJSGlFKUaBVNnQNoFkdAj8ly/9Hc13V9lChoBmgJaA9DCF2j5UCPQ2NAlIaUUpRoFU3oA2gWR0CPyXBSk0rLdX2UKGgGaAloD0MIz4O7s3bZY0CUhpRSlGgVTegDaBZHQI/SahcqvvB1fZQoaAZoCWgPQwgxlX7CGRdxQJSGlFKUaBVNRgFoFkdAj9N9itq59XV9lChoBmgJaA9DCMYWghyU6HFAlIaUUpRoFU1PAWgWR0CP06sH0K7adX2UKGgGaAloD0MI220Xmmvyb0CUhpRSlGgVTegCaBZHQI/VJmbsniN1fZQoaAZoCWgPQwhLdmwE4k1vQJSGlFKUaBVNOQNoFkdAj9YIVVPva3V9lChoBmgJaA9DCNrFNNP96nFAlIaUUpRoFU14AWgWR0CP1g2RaHKwdX2UKGgGaAloD0MITmTmApcOb0CUhpRSlGgVTTYCaBZHQI/WlfqoqCp1fZQoaAZoCWgPQwhu/InKxj9zQJSGlFKUaBVL2mgWR0CP2RhYNiH7dX2UKGgGaAloD0MI6kDWU6sUc0CUhpRSlGgVTRMBaBZHQI/ZVxQzk6t1fZQoaAZoCWgPQwje40wT9tNyQJSGlFKUaBVNmANoFkdAj9l5WBBiTnV9lChoBmgJaA9DCCVBuAIK+F9AlIaUUpRoFU3oA2gWR0CP3Idsi0OWdX2UKGgGaAloD0MIQni0cQQEcECUhpRSlGgVS+5oFkdAj93lkhA4XHV9lChoBmgJaA9DCFH4bB0ciktAlIaUUpRoFUvJaBZHQI/l4TqSowV1fZQoaAZoCWgPQwgDeAskqCpwQJSGlFKUaBVNbAFoFkdAj+gvIn0CinV9lChoBmgJaA9DCLqCbcSTSHBAlIaUUpRoFU1DAWgWR0CP6EqjrRjSdX2UKGgGaAloD0MIyeU/pN9/Z0CUhpRSlGgVTegDaBZHQI/qu0u14Ph1fZQoaAZoCWgPQwgxlumXiO9wQJSGlFKUaBVNNQFoFkdAj+q8iwB5o3V9lChoBmgJaA9DCP7V477VI3BAlIaUUpRoFU3UAmgWR0CP7J+ZPVNIdX2UKGgGaAloD0MIih74GKyWcUCUhpRSlGgVTRkBaBZHQI/u39ehPCV1fZQoaAZoCWgPQwgVqpuLv2FCQJSGlFKUaBVL4GgWR0CP87hm5DqodX2UKGgGaAloD0MIUu+pnPbdbUCUhpRSlGgVTZMCaBZHQI/0Sw0O3Dx1fZQoaAZoCWgPQwgn2lVI+ZFMQJSGlFKUaBVLzWgWR0CP9PtVJcxCdX2UKGgGaAloD0MInj9tVKfiYUCUhpRSlGgVTegDaBZHQI/2powmE5B1fZQoaAZoCWgPQwjKw0Kt6bZuQJSGlFKUaBVNBAFoFkdAj/c7RfF72XV9lChoBmgJaA9DCL+ByY0iFm1AlIaUUpRoFU2NAWgWR0CP92FmnO0LdX2UKGgGaAloD0MIvoOfOAB6ckCUhpRSlGgVTbMBaBZHQI/3hSFXaJ11fZQoaAZoCWgPQwjSx3xAoFhyQJSGlFKUaBVNoQFoFkdAj/l/ustCiXV9lChoBmgJaA9DCLMJMCx/uWRAlIaUUpRoFU3oA2gWR0CP+bd2Pkq+dX2UKGgGaAloD0MIhjsXRnoAcUCUhpRSlGgVTbcCaBZHQI/62W4Vh1F1fZQoaAZoCWgPQwhkAn6N5B9wQJSGlFKUaBVNAwJoFkdAj/tfkvK2a3V9lChoBmgJaA9DCH0G1JsRhnBAlIaUUpRoFU3yAmgWR0CP+6koF3Y+dX2UKGgGaAloD0MISS9q96tvcUCUhpRSlGgVTX0BaBZHQI/9tIAfdRB1fZQoaAZoCWgPQwgaa39ne4dyQJSGlFKUaBVNEgJoFkdAkAEmhVU+93V9lChoBmgJaA9DCAFNhA3PsG1AlIaUUpRoFU1sAmgWR0CQBV/MW43FdX2UKGgGaAloD0MIEsE4uLRWcECUhpRSlGgVTRABaBZHQJAHAbOu7pV1fZQoaAZoCWgPQwgb1elA1mlFQJSGlFKUaBVLxGgWR0CQCHp5eJHidX2UKGgGaAloD0MIyqSGNgB2VUCUhpRSlGgVS+JoFkdAkAnPSYw7DHV9lChoBmgJaA9DCJVE9kEWEHNAlIaUUpRoFU3wAWgWR0CQDpI4VARkdX2UKGgGaAloD0MIv2INF3l0c0CUhpRSlGgVTRkBaBZHQJAPVeBxxT91fZQoaAZoCWgPQwgQPpRoid1yQJSGlFKUaBVN/gFoFkdAkBAZxvNu+HV9lChoBmgJaA9DCHbdW5EY0HFAlIaUUpRoFU1JAWgWR0CQEDamXPZ7dX2UKGgGaAloD0MIk+F4PsONckCUhpRSlGgVTSUBaBZHQJATS6NEPUd1fZQoaAZoCWgPQwjXTL7ZZqVvQJSGlFKUaBVNDgJoFkdAkBSSwbEP2HV9lChoBmgJaA9DCEHw+PbuF3FAlIaUUpRoFU3LA2gWR0CQGAxA0KqodX2UKGgGaAloD0MIvi7Df3qzckCUhpRSlGgVTVgCaBZHQJAaettALRd1fZQoaAZoCWgPQwhRLo1fOCtzQJSGlFKUaBVNxgFoFkdAkBqSquKXOXV9lChoBmgJaA9DCDmX4qqyuzJAlIaUUpRoFUvWaBZHQJAbUUbkwN91fZQoaAZoCWgPQwgdHOxNzChxQJSGlFKUaBVN4wFoFkdAkBtpB1LamHV9lChoBmgJaA9DCHdM3ZUdzHFAlIaUUpRoFU1cAWgWR0CQHB1D0DlpdX2UKGgGaAloD0MI16VG6OdmckCUhpRSlGgVTVYCaBZHQJAeQ4S6DoR1fZQoaAZoCWgPQwjRdeEHJ8ZxQJSGlFKUaBVNvwJoFkdAkB/WZE2HcnV9lChoBmgJaA9DCEZ6UbvfF3FAlIaUUpRoFU2mAWgWR0CQICDfFaStdX2UKGgGaAloD0MIFNBE2DCscUCUhpRSlGgVTVkCaBZHQJAinCYTkAB1fZQoaAZoCWgPQwhosRTJFw1wQJSGlFKUaBVNMAFoFkdAkCM9Xo1UEXV9lChoBmgJaA9DCGb4TzdQ93JAlIaUUpRoFU3HAmgWR0CQI9Ea2nbZdX2UKGgGaAloD0MI6Q33kZvbcUCUhpRSlGgVTd0BaBZHQJAkFOUMXrN1ZS4="
|
53 |
},
|
54 |
"ep_success_buffer": {
|
55 |
":type:": "<class 'collections.deque'>",
|
56 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
},
|
58 |
+
"_n_updates": 124,
|
59 |
"observation_space": {
|
60 |
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
|
|
77 |
"dtype": "int64",
|
78 |
"_np_random": null
|
79 |
},
|
80 |
+
"n_envs": 32,
|
81 |
"n_steps": 1024,
|
82 |
"gamma": 0.999,
|
83 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85e03f696b3b97e3e5c19f884873426c26826eef81caa47e1942c1a9b204e4ab
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e82ed460c3b0b7162531e9ea7a6ad87be67939e90915efe630d4dd74ef7ae77
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 258.7490530440576, "std_reward": 17.357196729604556, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-15T14:34:44.871669"}
|