{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f24cfe23900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681567889317589505, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADMJGrz2SGO6YqvROsSyZzVkkDO749n0uQAAgD8AAIA/JqSJPWO5Yj0VXJC+xGCivtvKm71dqse9AAAAAAAAAABNf4G9I+E1PWYYGz2m30e+tBEEvNuuEL0AAAAAAAAAAGaRET2FA9u56uPkuub2BrYYwrE6qosDOgAAgD8AAIA/tvSwPl4gcT8NqDA9LAnyvnE31j7a1Cm+AAAAAAAAAADziJk9hWPtuTi0dTqiyg42AooDOUHIjbkAAIA/AACAP2bkFT2uBYe6HobcOy0oLjh+aFA7YTAwuAAAgD8AAIA/wKy+PV8tRz5wT/y9mVidvpR/KD2iRIM9AAAAAAAAAABmBkg6Urj0ueDrnDirXxyyU5Slu1tUtrcAAIA/AACAP5pZZDrDqVW6YkabtsSiWLFdoI257iG5NQAAgD8AAIA/gE5mPa1B4j7dJaG9cCmLvvfDHz3dWn+9AAAAAAAAAADN7Ig7e+KcuqOY6Tmtsv81BoS6uaXkBrkAAIA/AACAP8Vtm75dDnA/HbA2vp4t5b4zevq+Bt2NPQAAAAAAAAAAzQyUPBTks7pc9hG4wecVswO/ibh2wCY3AACAPwAAgD9mID08Hy2puVbShLvvbZU4TcqXuzxrrjkAAIA/AACAP5rxSr06cls/5m20PWGyyb5+KRG97w0lPQAAAAAAAAAAM5L1POFsmbrUtZm7mbM8ONYxxbr57zY3AACAPwAAgD8a06C9mzLXPoH+QD4DxI2+51O6PG4xSj0AAAAAAAAAAAA4LbwUOKK66meVuq8+f7XbuSK6NR6sOQAAgD8AAIA/JkeDvRQCgbqG5ic4KxJoM6hb/ToDekK3AACAPwAAgD8z0Vu8rlmEupnFNLhL2Cez6g3DOkp8UjcAAIA/AACAPzO2jj32OH+6eNO0u08k9De8iGe7MEAJtgAAgD8AAIA/mraMvJ8irTydyPm9pmkXvmsYSb7uYUc/AACAPwAAAAAafhW9j94oumATejrc2ZQ1Ws06O0qTk7kAAIA/AACAP9qkib2ueZq6NkmNuzQwpraT5XS4kgOjOgAAgD8AAIA/zaUZPVwxfD+KE4U6Tqi4vuCgfT32h5M9AAAAAAAAAAAa5Py9bZKnPmQrjj4Fkpq+fiECPqDumb0AAAAAAAAAAAAYKbyPpma6uyXYu2MDcLYub3m6eMHcNQAAgD8AAIA/mtEIvMMxWLqvvr22cxC7sdoI4Tnait41AACAPwAAgD8Ahu689jRiuqu4LrurGGS1rnZSug48SToAAIA/AACAP5rPvD3IEKK8mu2PvW2M8zwOpRI+zYO8vQAAgD8AAAAAALCyOuFQoLoWm0i7joYKOFyMr7ogwde1AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIequuQ/UHcECUhpRSlIwBbJRNlQGMAXSUR0CO2BsDW9UTdX2UKGgGaAloD0MId554zpbGY0CUhpRSlGgVTegDaBZHQI7debExZdR1fZQoaAZoCWgPQwh9ryE4rkpnQJSGlFKUaBVN6ANoFkdAjt3HyVfNRnV9lChoBmgJaA9DCOFFX0EaKW9AlIaUUpRoFU0WAWgWR0CO3whSLqD9dX2UKGgGaAloD0MICvfKvNUBb0CUhpRSlGgVTS0DaBZHQI7mi+QEIPd1fZQoaAZoCWgPQwjSUnk7QqdxQJSGlFKUaBVNlQJoFkdAjuut5le4TnV9lChoBmgJaA9DCC3Pg7uz3mZAlIaUUpRoFU3oA2gWR0CO7j9lVcUudX2UKGgGaAloD0MI9fV8zfLScUCUhpRSlGgVTUUDaBZHQI7u6OmzjWF1fZQoaAZoCWgPQwiQaAJFLAhjQJSGlFKUaBVN6ANoFkdAju/hY/3WWnV9lChoBmgJaA9DCD5eSIcHeWxAlIaUUpRoFU32AWgWR0CO8AejEehgdX2UKGgGaAloD0MIuCIxQc1rc0CUhpRSlGgVTdACaBZHQI7x52ll9Sd1fZQoaAZoCWgPQwgBo8ubg+ZxQJSGlFKUaBVL+2gWR0CO86FsYVIqdX2UKGgGaAloD0MIWf0RhkFZcUCUhpRSlGgVTUQCaBZHQI70zFCLMs91fZQoaAZoCWgPQwivl6YIcFBnQJSGlFKUaBVN6ANoFkdAjvvvB7/n4nV9lChoBmgJaA9DCAPv5NOj1HFAlIaUUpRoFU2uAmgWR0CO/Y1UEPlNdX2UKGgGaAloD0MI29styUElcECUhpRSlGgVTZMDaBZHQI7/jmnwXqJ1fZQoaAZoCWgPQwj6tfXTf7JxQJSGlFKUaBVNCANoFkdAjwVv5YYBNnV9lChoBmgJaA9DCAqA8QwauG9AlIaUUpRoFU0jAWgWR0CPDYrn1WbPdX2UKGgGaAloD0MI1F+vsGANckCUhpRSlGgVTS4BaBZHQI8dkt/WlM11fZQoaAZoCWgPQwhAvoQKjl5nQJSGlFKUaBVN6ANoFkdAjx4u0svqT3V9lChoBmgJaA9DCIRLx5xnOnNAlIaUUpRoFU1rAWgWR0CPMEzVMEiddX2UKGgGaAloD0MIMlhxqnXNcUCUhpRSlGgVTUYCaBZHQI85030f5k91fZQoaAZoCWgPQwiHFtnO94JvQJSGlFKUaBVNQwJoFkdAjzoj/uLJjnV9lChoBmgJaA9DCKDejJovhnFAlIaUUpRoFU0iAmgWR0CPOvUWl/H6dX2UKGgGaAloD0MIamgDsAG2ckCUhpRSlGgVTQ8CaBZHQI8+xnanJkp1fZQoaAZoCWgPQwiu1R72QrNvQJSGlFKUaBVNrwJoFkdAj0eDwH7gsXV9lChoBmgJaA9DCAJKQ43C72FAlIaUUpRoFU3oA2gWR0CPSzR4yGi6dX2UKGgGaAloD0MI2LlpM87jZkCUhpRSlGgVTegDaBZHQI9QQ5YHPeJ1fZQoaAZoCWgPQwjyejApPqhxQJSGlFKUaBVN+AJoFkdAj1GkLH+6y3V9lChoBmgJaA9DCCrJOhxdq25AlIaUUpRoFU1yA2gWR0CPYecdYGMXdX2UKGgGaAloD0MIRiQKLeuVZkCUhpRSlGgVTegDaBZHQI9kOymhufp1fZQoaAZoCWgPQwiGVFG8yvBxQJSGlFKUaBVN1QFoFkdAj6rnf/FR53V9lChoBmgJaA9DCHtLOV9suG9AlIaUUpRoFU2MA2gWR0CPrid1+y7gdX2UKGgGaAloD0MI+yDLgonwa0CUhpRSlGgVTWoCaBZHQI+0eYF7laN1fZQoaAZoCWgPQwi+LsN/ug9BQJSGlFKUaBVL92gWR0CPtPrqt5lfdX2UKGgGaAloD0MI6j4AqU2ZX0CUhpRSlGgVTegDaBZHQI+2XGn4wh51fZQoaAZoCWgPQwiNfcnGA7twQJSGlFKUaBVNkAJoFkdAj7ZlAu7HyXV9lChoBmgJaA9DCAhVavbAh21AlIaUUpRoFU1zAmgWR0CPuLaYeDFqdX2UKGgGaAloD0MI/YSzW0t2cECUhpRSlGgVTRoBaBZHQI+9cYsNDtx1fZQoaAZoCWgPQwgH8BZIEIVwQJSGlFKUaBVNqgJoFkdAj73tZNfw7XV9lChoBmgJaA9DCL1TAfd8CHFAlIaUUpRoFU3zAWgWR0CPvsogmqo7dX2UKGgGaAloD0MIhetRuJ7kZ0CUhpRSlGgVTegDaBZHQI/HKrLhaTx1fZQoaAZoCWgPQwjkFB3JZd1sQJSGlFKUaBVNnQNoFkdAj8ly/9Hc13V9lChoBmgJaA9DCF2j5UCPQ2NAlIaUUpRoFU3oA2gWR0CPyXBSk0rLdX2UKGgGaAloD0MIz4O7s3bZY0CUhpRSlGgVTegDaBZHQI/SahcqvvB1fZQoaAZoCWgPQwgxlX7CGRdxQJSGlFKUaBVNRgFoFkdAj9N9itq59XV9lChoBmgJaA9DCMYWghyU6HFAlIaUUpRoFU1PAWgWR0CP06sH0K7adX2UKGgGaAloD0MI220Xmmvyb0CUhpRSlGgVTegCaBZHQI/VJmbsniN1fZQoaAZoCWgPQwhLdmwE4k1vQJSGlFKUaBVNOQNoFkdAj9YIVVPva3V9lChoBmgJaA9DCNrFNNP96nFAlIaUUpRoFU14AWgWR0CP1g2RaHKwdX2UKGgGaAloD0MITmTmApcOb0CUhpRSlGgVTTYCaBZHQI/WlfqoqCp1fZQoaAZoCWgPQwhu/InKxj9zQJSGlFKUaBVL2mgWR0CP2RhYNiH7dX2UKGgGaAloD0MI6kDWU6sUc0CUhpRSlGgVTRMBaBZHQI/ZVxQzk6t1fZQoaAZoCWgPQwje40wT9tNyQJSGlFKUaBVNmANoFkdAj9l5WBBiTnV9lChoBmgJaA9DCCVBuAIK+F9AlIaUUpRoFU3oA2gWR0CP3Idsi0OWdX2UKGgGaAloD0MIQni0cQQEcECUhpRSlGgVS+5oFkdAj93lkhA4XHV9lChoBmgJaA9DCFH4bB0ciktAlIaUUpRoFUvJaBZHQI/l4TqSowV1fZQoaAZoCWgPQwgDeAskqCpwQJSGlFKUaBVNbAFoFkdAj+gvIn0CinV9lChoBmgJaA9DCLqCbcSTSHBAlIaUUpRoFU1DAWgWR0CP6EqjrRjSdX2UKGgGaAloD0MIyeU/pN9/Z0CUhpRSlGgVTegDaBZHQI/qu0u14Ph1fZQoaAZoCWgPQwgxlumXiO9wQJSGlFKUaBVNNQFoFkdAj+q8iwB5o3V9lChoBmgJaA9DCP7V477VI3BAlIaUUpRoFU3UAmgWR0CP7J+ZPVNIdX2UKGgGaAloD0MIih74GKyWcUCUhpRSlGgVTRkBaBZHQI/u39ehPCV1fZQoaAZoCWgPQwgVqpuLv2FCQJSGlFKUaBVL4GgWR0CP87hm5DqodX2UKGgGaAloD0MIUu+pnPbdbUCUhpRSlGgVTZMCaBZHQI/0Sw0O3Dx1fZQoaAZoCWgPQwgn2lVI+ZFMQJSGlFKUaBVLzWgWR0CP9PtVJcxCdX2UKGgGaAloD0MInj9tVKfiYUCUhpRSlGgVTegDaBZHQI/2powmE5B1fZQoaAZoCWgPQwjKw0Kt6bZuQJSGlFKUaBVNBAFoFkdAj/c7RfF72XV9lChoBmgJaA9DCL+ByY0iFm1AlIaUUpRoFU2NAWgWR0CP92FmnO0LdX2UKGgGaAloD0MIvoOfOAB6ckCUhpRSlGgVTbMBaBZHQI/3hSFXaJ11fZQoaAZoCWgPQwjSx3xAoFhyQJSGlFKUaBVNoQFoFkdAj/l/ustCiXV9lChoBmgJaA9DCLMJMCx/uWRAlIaUUpRoFU3oA2gWR0CP+bd2Pkq+dX2UKGgGaAloD0MIhjsXRnoAcUCUhpRSlGgVTbcCaBZHQI/62W4Vh1F1fZQoaAZoCWgPQwhkAn6N5B9wQJSGlFKUaBVNAwJoFkdAj/tfkvK2a3V9lChoBmgJaA9DCH0G1JsRhnBAlIaUUpRoFU3yAmgWR0CP+6koF3Y+dX2UKGgGaAloD0MISS9q96tvcUCUhpRSlGgVTX0BaBZHQI/9tIAfdRB1fZQoaAZoCWgPQwgaa39ne4dyQJSGlFKUaBVNEgJoFkdAkAEmhVU+93V9lChoBmgJaA9DCAFNhA3PsG1AlIaUUpRoFU1sAmgWR0CQBV/MW43FdX2UKGgGaAloD0MIEsE4uLRWcECUhpRSlGgVTRABaBZHQJAHAbOu7pV1fZQoaAZoCWgPQwgb1elA1mlFQJSGlFKUaBVLxGgWR0CQCHp5eJHidX2UKGgGaAloD0MIyqSGNgB2VUCUhpRSlGgVS+JoFkdAkAnPSYw7DHV9lChoBmgJaA9DCJVE9kEWEHNAlIaUUpRoFU3wAWgWR0CQDpI4VARkdX2UKGgGaAloD0MIv2INF3l0c0CUhpRSlGgVTRkBaBZHQJAPVeBxxT91fZQoaAZoCWgPQwgQPpRoid1yQJSGlFKUaBVN/gFoFkdAkBAZxvNu+HV9lChoBmgJaA9DCHbdW5EY0HFAlIaUUpRoFU1JAWgWR0CQEDamXPZ7dX2UKGgGaAloD0MIk+F4PsONckCUhpRSlGgVTSUBaBZHQJATS6NEPUd1fZQoaAZoCWgPQwjXTL7ZZqVvQJSGlFKUaBVNDgJoFkdAkBSSwbEP2HV9lChoBmgJaA9DCEHw+PbuF3FAlIaUUpRoFU3LA2gWR0CQGAxA0KqodX2UKGgGaAloD0MIvi7Df3qzckCUhpRSlGgVTVgCaBZHQJAaettALRd1fZQoaAZoCWgPQwhRLo1fOCtzQJSGlFKUaBVNxgFoFkdAkBqSquKXOXV9lChoBmgJaA9DCDmX4qqyuzJAlIaUUpRoFUvWaBZHQJAbUUbkwN91fZQoaAZoCWgPQwgdHOxNzChxQJSGlFKUaBVN4wFoFkdAkBtpB1LamHV9lChoBmgJaA9DCHdM3ZUdzHFAlIaUUpRoFU1cAWgWR0CQHB1D0DlpdX2UKGgGaAloD0MI16VG6OdmckCUhpRSlGgVTVYCaBZHQJAeQ4S6DoR1fZQoaAZoCWgPQwjRdeEHJ8ZxQJSGlFKUaBVNvwJoFkdAkB/WZE2HcnV9lChoBmgJaA9DCEZ6UbvfF3FAlIaUUpRoFU2mAWgWR0CQICDfFaStdX2UKGgGaAloD0MIFNBE2DCscUCUhpRSlGgVTVkCaBZHQJAinCYTkAB1fZQoaAZoCWgPQwhosRTJFw1wQJSGlFKUaBVNMAFoFkdAkCM9Xo1UEXV9lChoBmgJaA9DCGb4TzdQ93JAlIaUUpRoFU3HAmgWR0CQI9Ea2nbZdX2UKGgGaAloD0MI6Q33kZvbcUCUhpRSlGgVTd0BaBZHQJAkFOUMXrN1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}