sryu1 commited on
Commit
6859841
1 Parent(s): 3d365be

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.52 +/- 0.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e4d627294f002dcd989c84e839445f5eee897d68b238be9f1510b5154de8e4e
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3e7879c700>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f3e78790f60>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 142360,
45
+ "_total_timesteps": 200000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674120679033070278,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArqRXv/95eLwTuS8/LOwsvtNOzb6cWy2/wbSGvluMH7+kDBY/8VU+v1idxD34B3c9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlUCnv1GPyz0Mfv4+YUnkPnAJLr8GK9S/SNywPi2bQb8fXjc/4NU0v6/pOr4y3Pu+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACupFe//3l4vBO5Lz+5eEY/ch66P/wRxD8s7Cy+007NvpxbLb8U5hvA5gTUv0hll7/BtIa+W4wfv6QMFj/p646/94/9P63Ck77xVT6/WJ3EPfgHdz00BIk/yFv0PwoFXj+UaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[-0.84235656 -0.0151658 0.68641776]\n [-0.16886967 -0.400992 -0.6771791 ]\n [-0.2630978 -0.6232354 0.5861304 ]\n [-0.74349886 0.09600323 0.06031033]]",
60
+ "desired_goal": "[[-1.3066584 0.09939445 0.4970554 ]\n [ 0.44587234 -0.6798315 -1.657563 ]\n [ 0.3454306 -0.75627404 0.7162799 ]\n [-0.7063885 -0.18253206 -0.49191433]]",
61
+ "observation": "[[-0.84235656 -0.0151658 0.68641776 0.7752796 1.4540541 1.5317988 ]\n [-0.16886967 -0.400992 -0.6771791 -2.4359179 -1.6563995 -1.1827784 ]\n [-0.2630978 -0.6232354 0.5861304 -1.1165744 1.980956 -0.28859463]\n [-0.74349886 0.09600323 0.06031033 1.0704408 1.909051 0.8672644 ]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJIy9vahNp73n8xM+ykimvADZgL3dqOY98qDmPKdK7zypW9c9coRHvbKler28gR8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.09255245 -0.08169109 0.1444851 ]\n [-0.02029838 -0.06291389 0.11262677]\n [ 0.02815292 0.0292104 0.1051553 ]\n [-0.04871029 -0.06119318 0.15576833]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.2883,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8fRKWYb4/b+UhpRSlIwBbJRLMowBdJRHQHgsvJ7sv7F1fZQoaAZoCWgPQwjmPjkKEGUDwJSGlFKUaBVLMmgWR0B4KsdvKlpHdX2UKGgGaAloD0MIf/j578Er/7+UhpRSlGgVSzJoFkdAeCjYWcjJMnV9lChoBmgJaA9DCMYxkj1Czfu/lIaUUpRoFUsyaBZHQHgnAOFxn4B1fZQoaAZoCWgPQwhButi0UsgAwJSGlFKUaBVLMmgWR0B4M+jesPrfdX2UKGgGaAloD0MIkQw5tp6h/b+UhpRSlGgVSzJoFkdAeDHz+WGATnV9lChoBmgJaA9DCD6WPnRBHQDAlIaUUpRoFUsyaBZHQHgwBLoOhCd1fZQoaAZoCWgPQwhod0gxQKL8v5SGlFKUaBVLMmgWR0B4Lig/TspodX2UKGgGaAloD0MIak5eZAJ+/L+UhpRSlGgVSzJoFkdAeDrp97Wuo3V9lChoBmgJaA9DCPc8f9qoDvu/lIaUUpRoFUsyaBZHQHg49tVJcxF1fZQoaAZoCWgPQwgJh97i4V0BwJSGlFKUaBVLMmgWR0B4NwhzNliCdX2UKGgGaAloD0MIP26/fLJi/7+UhpRSlGgVSzJoFkdAeDUsNUfgaXV9lChoBmgJaA9DCEOrkzMUd/u/lIaUUpRoFUsyaBZHQHhBnzH0btJ1fZQoaAZoCWgPQwhr1a4Jaa0AwJSGlFKUaBVLMmgWR0B4P6tMfzSUdX2UKGgGaAloD0MIs2Dij6IO/L+UhpRSlGgVSzJoFkdAeD28VpKzzHV9lChoBmgJaA9DCJT7HYoCvf6/lIaUUpRoFUsyaBZHQHg732/SH/N1fZQoaAZoCWgPQwjp1QCloYb/v5SGlFKUaBVLMmgWR0B4SIQI2OyWdX2UKGgGaAloD0MI2zS214Je/L+UhpRSlGgVSzJoFkdAeEaPMjeKsXV9lChoBmgJaA9DCPA1BMdlnP+/lIaUUpRoFUsyaBZHQHhEoCU5dW11fZQoaAZoCWgPQwgG8uzyrc/9v5SGlFKUaBVLMmgWR0B4QsMw1zhhdX2UKGgGaAloD0MIoIfaNoxC+r+UhpRSlGgVSzJoFkdAeE+sLv1DjXV9lChoBmgJaA9DCEIIyJdQgfm/lIaUUpRoFUsyaBZHQHhNuFlCkXV1fZQoaAZoCWgPQwhr1a4JaQ0BwJSGlFKUaBVLMmgWR0B4S8yFfzBidX2UKGgGaAloD0MIzJvDtdojAcCUhpRSlGgVSzJoFkdAeEnz9jwx33V9lChoBmgJaA9DCFu21hcJ7fq/lIaUUpRoFUsyaBZHQHhWmYF7laN1fZQoaAZoCWgPQwjdRZiiXPoAwJSGlFKUaBVLMmgWR0B4VKSfUWl/dX2UKGgGaAloD0MIuY5xxcUR/r+UhpRSlGgVSzJoFkdAeFK1hb4agnV9lChoBmgJaA9DCKd4XFSLCAHAlIaUUpRoFUsyaBZHQHhQ2SdOIqN1fZQoaAZoCWgPQwi+iSE5mbj/v5SGlFKUaBVLMmgWR0B4XYZgogFHdX2UKGgGaAloD0MIDqSLTSuFAcCUhpRSlGgVSzJoFkdAeFuSZSeiBXV9lChoBmgJaA9DCEFjJlEveADAlIaUUpRoFUsyaBZHQHhZow22oeh1fZQoaAZoCWgPQwi3t1uSA7b+v5SGlFKUaBVLMmgWR0B4V8XVLBbfdX2UKGgGaAloD0MIDCJS0y4m+7+UhpRSlGgVSzJoFkdAeGSgaWHDaXV9lChoBmgJaA9DCJS/e0eNSfu/lIaUUpRoFUsyaBZHQHhirdnCfpV1fZQoaAZoCWgPQwh3FVJ+Uu37v5SGlFKUaBVLMmgWR0B4YMC+10DEdX2UKGgGaAloD0MIXp7OFaUE/L+UhpRSlGgVSzJoFkdAeF7j+rELpnV9lChoBmgJaA9DCF8JpMSurfq/lIaUUpRoFUsyaBZHQHhrrf1pTMt1fZQoaAZoCWgPQwjByqFFtjP9v5SGlFKUaBVLMmgWR0B4ablr/KhddX2UKGgGaAloD0MI20yFeCQe/b+UhpRSlGgVSzJoFkdAeGfK8+Roy3V9lChoBmgJaA9DCJf9utOdp/q/lIaUUpRoFUsyaBZHQHhl8JQcghd1fZQoaAZoCWgPQwjFjzF3LaH+v5SGlFKUaBVLMmgWR0B4cqrWAf+1dX2UKGgGaAloD0MIwVPIlXrWAMCUhpRSlGgVSzJoFkdAeHC2GZeAu3V9lChoBmgJaA9DCC9tOCwNfP2/lIaUUpRoFUsyaBZHQHhuxsMy8Bd1fZQoaAZoCWgPQwhcdR2qKQkAwJSGlFKUaBVLMmgWR0B4bOxqwhW6dX2UKGgGaAloD0MI93MK8rPR/7+UhpRSlGgVSzJoFkdAeHlc/MW43HV9lChoBmgJaA9DCIY7F0Z60fy/lIaUUpRoFUsyaBZHQHh3Z/LDAJt1fZQoaAZoCWgPQwi693DJcSf3v5SGlFKUaBVLMmgWR0B4dXlRxcVydX2UKGgGaAloD0MIXwzlRLuK/L+UhpRSlGgVSzJoFkdAeHOb3Gn4wnV9lChoBmgJaA9DCNaoh2h0x/u/lIaUUpRoFUsyaBZHQHiAVXmvGId1fZQoaAZoCWgPQwjzPLg7a/f8v5SGlFKUaBVLMmgWR0B4fmD5CWu6dX2UKGgGaAloD0MIIXam0HnNAsCUhpRSlGgVSzJoFkdAeHxyjpLVWnV9lChoBmgJaA9DCHi5iO/ELP2/lIaUUpRoFUsyaBZHQHh6lanrIHV1fZQoaAZoCWgPQwhTQrCqXv78v5SGlFKUaBVLMmgWR0B4h09W6shgdX2UKGgGaAloD0MI46jcRC3N/r+UhpRSlGgVSzJoFkdAeIVblA/s3XV9lChoBmgJaA9DCJPIPsiyoP+/lIaUUpRoFUsyaBZHQHiDbjkuHvd1fZQoaAZoCWgPQwiZu5aQD5oBwJSGlFKUaBVLMmgWR0B4gZIK+i8GdX2UKGgGaAloD0MIc0urIXGvAMCUhpRSlGgVSzJoFkdAeI4+I/JNkHV9lChoBmgJaA9DCAFp/wOsFf2/lIaUUpRoFUsyaBZHQHiMS08eS0V1fZQoaAZoCWgPQwgDCYofY27+v5SGlFKUaBVLMmgWR0B4iluxbB42dX2UKGgGaAloD0MIRNsxdVf2/7+UhpRSlGgVSzJoFkdAeIh+6iCaqnV9lChoBmgJaA9DCBXgu80bJ/2/lIaUUpRoFUsyaBZHQHiVDUExIrh1fZQoaAZoCWgPQwhGJ0ut99v/v5SGlFKUaBVLMmgWR0B4kxjI7vG7dX2UKGgGaAloD0MIpRXfUPjs+b+UhpRSlGgVSzJoFkdAeJEpY9xIa3V9lChoBmgJaA9DCHQoQ1VM5f2/lIaUUpRoFUsyaBZHQHiPTFyaNMp1fZQoaAZoCWgPQwh2ilWDMHf9v5SGlFKUaBVLMmgWR0B4m9qTKT0QdX2UKGgGaAloD0MIaTUk7rEUAMCUhpRSlGgVSzJoFkdAeJnl9BrvcHV9lChoBmgJaA9DCIZWJ2coTgDAlIaUUpRoFUsyaBZHQHiX9n9Nvfl1fZQoaAZoCWgPQwhubHak+g7/v5SGlFKUaBVLMmgWR0B4lhlbu+h5dX2UKGgGaAloD0MIRRDn4QSm+b+UhpRSlGgVSzJoFkdAeKK4pMHryHV9lChoBmgJaA9DCE1Ngjek8QHAlIaUUpRoFUsyaBZHQHigxciW3Sd1fZQoaAZoCWgPQwhtrprniFwAwJSGlFKUaBVLMmgWR0B4ntZ3cHnmdX2UKGgGaAloD0MI9+rjoe/u/L+UhpRSlGgVSzJoFkdAeJz5wwTM7nV9lChoBmgJaA9DCCYapOAppADAlIaUUpRoFUsyaBZHQHipWRigCfZ1fZQoaAZoCWgPQwigG5qy00/8v5SGlFKUaBVLMmgWR0B4p2Rp1zQvdX2UKGgGaAloD0MIhUGZRpOL/7+UhpRSlGgVSzJoFkdAeKV1gYxcmnV9lChoBmgJaA9DCMB1xYzwtvu/lIaUUpRoFUsyaBZHQHijmDDjzZp1fZQoaAZoCWgPQwiISE27mOb8v5SGlFKUaBVLMmgWR0B4sDRgJC0GdX2UKGgGaAloD0MI9G+X/bqT+7+UhpRSlGgVSzJoFkdAeK5AGSpzcXV9lChoBmgJaA9DCCHNWDSdXfy/lIaUUpRoFUsyaBZHQHisUXtShrZ1fZQoaAZoCWgPQwgtQNtq1pn7v5SGlFKUaBVLMmgWR0B4qnUQTVUddX2UKGgGaAloD0MIorWizXGu/r+UhpRSlGgVSzJoFkdAeLbHzYmLL3V9lChoBmgJaA9DCIqQup19ZQDAlIaUUpRoFUsyaBZHQHi00zsQd0d1fZQoaAZoCWgPQwj8/zhhwigCwJSGlFKUaBVLMmgWR0B4suXC0ngHdX2UKGgGaAloD0MIkZkLXB6LAMCUhpRSlGgVSzJoFkdAeLEKnNxEOXV9lChoBmgJaA9DCN5YUBiUCQDAlIaUUpRoFUsyaBZHQHi9oACGN711fZQoaAZoCWgPQwj/lZUmpaD9v5SGlFKUaBVLMmgWR0B4u62F36hydX2UKGgGaAloD0MIxcn9DkUB+r+UhpRSlGgVSzJoFkdAeLm+fh/AkHV9lChoBmgJaA9DCJbOh2cJMv2/lIaUUpRoFUsyaBZHQHi34YFaB7N1fZQoaAZoCWgPQwgs8BXdeg0BwJSGlFKUaBVLMmgWR0B4xHUkOZssdX2UKGgGaAloD0MI4UbKFkl7A8CUhpRSlGgVSzJoFkdAeMKAJLM9sHV9lChoBmgJaA9DCED2evfH+/+/lIaUUpRoFUsyaBZHQHjAkJng5zZ1fZQoaAZoCWgPQwjMJVXbTdAAwJSGlFKUaBVLMmgWR0B4vrM1TBIndX2UKGgGaAloD0MILPAV3XqN/L+UhpRSlGgVSzJoFkdAeMtPw/gR9XV9lChoBmgJaA9DCMOayqKwS/m/lIaUUpRoFUsyaBZHQHjJWxt52Qp1fZQoaAZoCWgPQwh9z0iERvD3v5SGlFKUaBVLMmgWR0B4x2xA0KqodX2UKGgGaAloD0MIXkccsoF0/7+UhpRSlGgVSzJoFkdAeMWPJJXhfnV9lChoBmgJaA9DCD4D6s2o+fy/lIaUUpRoFUsyaBZHQHjSJ/XoTwl1fZQoaAZoCWgPQwiG6BA4Eqj+v5SGlFKUaBVLMmgWR0B40DL+xW1ddX2UKGgGaAloD0MI9z/AWrWr+r+UhpRSlGgVSzJoFkdAeM5Dh99c8nV9lChoBmgJaA9DCPomTYOief2/lIaUUpRoFUsyaBZHQHjMZj+aScN1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 7117,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5af8cd1f4c27d85efba043b0ba31d863c0eab1dc3109bf94e6355c6a3d920b18
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91f58fe9c6318e335fe20317b030c6563ffd4398085736a8a313d39192ab800c
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3e7879c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3e78790f60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 142360, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674120679033070278, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArqRXv/95eLwTuS8/LOwsvtNOzb6cWy2/wbSGvluMH7+kDBY/8VU+v1idxD34B3c9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlUCnv1GPyz0Mfv4+YUnkPnAJLr8GK9S/SNywPi2bQb8fXjc/4NU0v6/pOr4y3Pu+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACupFe//3l4vBO5Lz+5eEY/ch66P/wRxD8s7Cy+007NvpxbLb8U5hvA5gTUv0hll7/BtIa+W4wfv6QMFj/p646/94/9P63Ck77xVT6/WJ3EPfgHdz00BIk/yFv0PwoFXj+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.84235656 -0.0151658 0.68641776]\n [-0.16886967 -0.400992 -0.6771791 ]\n [-0.2630978 -0.6232354 0.5861304 ]\n [-0.74349886 0.09600323 0.06031033]]", "desired_goal": "[[-1.3066584 0.09939445 0.4970554 ]\n [ 0.44587234 -0.6798315 -1.657563 ]\n [ 0.3454306 -0.75627404 0.7162799 ]\n [-0.7063885 -0.18253206 -0.49191433]]", "observation": "[[-0.84235656 -0.0151658 0.68641776 0.7752796 1.4540541 1.5317988 ]\n [-0.16886967 -0.400992 -0.6771791 -2.4359179 -1.6563995 -1.1827784 ]\n [-0.2630978 -0.6232354 0.5861304 -1.1165744 1.980956 -0.28859463]\n [-0.74349886 0.09600323 0.06031033 1.0704408 1.909051 0.8672644 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJIy9vahNp73n8xM+ykimvADZgL3dqOY98qDmPKdK7zypW9c9coRHvbKler28gR8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09255245 -0.08169109 0.1444851 ]\n [-0.02029838 -0.06291389 0.11262677]\n [ 0.02815292 0.0292104 0.1051553 ]\n [-0.04871029 -0.06119318 0.15576833]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.2883, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8fRKWYb4/b+UhpRSlIwBbJRLMowBdJRHQHgsvJ7sv7F1fZQoaAZoCWgPQwjmPjkKEGUDwJSGlFKUaBVLMmgWR0B4KsdvKlpHdX2UKGgGaAloD0MIf/j578Er/7+UhpRSlGgVSzJoFkdAeCjYWcjJMnV9lChoBmgJaA9DCMYxkj1Czfu/lIaUUpRoFUsyaBZHQHgnAOFxn4B1fZQoaAZoCWgPQwhButi0UsgAwJSGlFKUaBVLMmgWR0B4M+jesPrfdX2UKGgGaAloD0MIkQw5tp6h/b+UhpRSlGgVSzJoFkdAeDHz+WGATnV9lChoBmgJaA9DCD6WPnRBHQDAlIaUUpRoFUsyaBZHQHgwBLoOhCd1fZQoaAZoCWgPQwhod0gxQKL8v5SGlFKUaBVLMmgWR0B4Lig/TspodX2UKGgGaAloD0MIak5eZAJ+/L+UhpRSlGgVSzJoFkdAeDrp97Wuo3V9lChoBmgJaA9DCPc8f9qoDvu/lIaUUpRoFUsyaBZHQHg49tVJcxF1fZQoaAZoCWgPQwgJh97i4V0BwJSGlFKUaBVLMmgWR0B4NwhzNliCdX2UKGgGaAloD0MIP26/fLJi/7+UhpRSlGgVSzJoFkdAeDUsNUfgaXV9lChoBmgJaA9DCEOrkzMUd/u/lIaUUpRoFUsyaBZHQHhBnzH0btJ1fZQoaAZoCWgPQwhr1a4Jaa0AwJSGlFKUaBVLMmgWR0B4P6tMfzSUdX2UKGgGaAloD0MIs2Dij6IO/L+UhpRSlGgVSzJoFkdAeD28VpKzzHV9lChoBmgJaA9DCJT7HYoCvf6/lIaUUpRoFUsyaBZHQHg732/SH/N1fZQoaAZoCWgPQwjp1QCloYb/v5SGlFKUaBVLMmgWR0B4SIQI2OyWdX2UKGgGaAloD0MI2zS214Je/L+UhpRSlGgVSzJoFkdAeEaPMjeKsXV9lChoBmgJaA9DCPA1BMdlnP+/lIaUUpRoFUsyaBZHQHhEoCU5dW11fZQoaAZoCWgPQwgG8uzyrc/9v5SGlFKUaBVLMmgWR0B4QsMw1zhhdX2UKGgGaAloD0MIoIfaNoxC+r+UhpRSlGgVSzJoFkdAeE+sLv1DjXV9lChoBmgJaA9DCEIIyJdQgfm/lIaUUpRoFUsyaBZHQHhNuFlCkXV1fZQoaAZoCWgPQwhr1a4JaQ0BwJSGlFKUaBVLMmgWR0B4S8yFfzBidX2UKGgGaAloD0MIzJvDtdojAcCUhpRSlGgVSzJoFkdAeEnz9jwx33V9lChoBmgJaA9DCFu21hcJ7fq/lIaUUpRoFUsyaBZHQHhWmYF7laN1fZQoaAZoCWgPQwjdRZiiXPoAwJSGlFKUaBVLMmgWR0B4VKSfUWl/dX2UKGgGaAloD0MIuY5xxcUR/r+UhpRSlGgVSzJoFkdAeFK1hb4agnV9lChoBmgJaA9DCKd4XFSLCAHAlIaUUpRoFUsyaBZHQHhQ2SdOIqN1fZQoaAZoCWgPQwi+iSE5mbj/v5SGlFKUaBVLMmgWR0B4XYZgogFHdX2UKGgGaAloD0MIDqSLTSuFAcCUhpRSlGgVSzJoFkdAeFuSZSeiBXV9lChoBmgJaA9DCEFjJlEveADAlIaUUpRoFUsyaBZHQHhZow22oeh1fZQoaAZoCWgPQwi3t1uSA7b+v5SGlFKUaBVLMmgWR0B4V8XVLBbfdX2UKGgGaAloD0MIDCJS0y4m+7+UhpRSlGgVSzJoFkdAeGSgaWHDaXV9lChoBmgJaA9DCJS/e0eNSfu/lIaUUpRoFUsyaBZHQHhirdnCfpV1fZQoaAZoCWgPQwh3FVJ+Uu37v5SGlFKUaBVLMmgWR0B4YMC+10DEdX2UKGgGaAloD0MIXp7OFaUE/L+UhpRSlGgVSzJoFkdAeF7j+rELpnV9lChoBmgJaA9DCF8JpMSurfq/lIaUUpRoFUsyaBZHQHhrrf1pTMt1fZQoaAZoCWgPQwjByqFFtjP9v5SGlFKUaBVLMmgWR0B4ablr/KhddX2UKGgGaAloD0MI20yFeCQe/b+UhpRSlGgVSzJoFkdAeGfK8+Roy3V9lChoBmgJaA9DCJf9utOdp/q/lIaUUpRoFUsyaBZHQHhl8JQcghd1fZQoaAZoCWgPQwjFjzF3LaH+v5SGlFKUaBVLMmgWR0B4cqrWAf+1dX2UKGgGaAloD0MIwVPIlXrWAMCUhpRSlGgVSzJoFkdAeHC2GZeAu3V9lChoBmgJaA9DCC9tOCwNfP2/lIaUUpRoFUsyaBZHQHhuxsMy8Bd1fZQoaAZoCWgPQwhcdR2qKQkAwJSGlFKUaBVLMmgWR0B4bOxqwhW6dX2UKGgGaAloD0MI93MK8rPR/7+UhpRSlGgVSzJoFkdAeHlc/MW43HV9lChoBmgJaA9DCIY7F0Z60fy/lIaUUpRoFUsyaBZHQHh3Z/LDAJt1fZQoaAZoCWgPQwi693DJcSf3v5SGlFKUaBVLMmgWR0B4dXlRxcVydX2UKGgGaAloD0MIXwzlRLuK/L+UhpRSlGgVSzJoFkdAeHOb3Gn4wnV9lChoBmgJaA9DCNaoh2h0x/u/lIaUUpRoFUsyaBZHQHiAVXmvGId1fZQoaAZoCWgPQwjzPLg7a/f8v5SGlFKUaBVLMmgWR0B4fmD5CWu6dX2UKGgGaAloD0MIIXam0HnNAsCUhpRSlGgVSzJoFkdAeHxyjpLVWnV9lChoBmgJaA9DCHi5iO/ELP2/lIaUUpRoFUsyaBZHQHh6lanrIHV1fZQoaAZoCWgPQwhTQrCqXv78v5SGlFKUaBVLMmgWR0B4h09W6shgdX2UKGgGaAloD0MI46jcRC3N/r+UhpRSlGgVSzJoFkdAeIVblA/s3XV9lChoBmgJaA9DCJPIPsiyoP+/lIaUUpRoFUsyaBZHQHiDbjkuHvd1fZQoaAZoCWgPQwiZu5aQD5oBwJSGlFKUaBVLMmgWR0B4gZIK+i8GdX2UKGgGaAloD0MIc0urIXGvAMCUhpRSlGgVSzJoFkdAeI4+I/JNkHV9lChoBmgJaA9DCAFp/wOsFf2/lIaUUpRoFUsyaBZHQHiMS08eS0V1fZQoaAZoCWgPQwgDCYofY27+v5SGlFKUaBVLMmgWR0B4iluxbB42dX2UKGgGaAloD0MIRNsxdVf2/7+UhpRSlGgVSzJoFkdAeIh+6iCaqnV9lChoBmgJaA9DCBXgu80bJ/2/lIaUUpRoFUsyaBZHQHiVDUExIrh1fZQoaAZoCWgPQwhGJ0ut99v/v5SGlFKUaBVLMmgWR0B4kxjI7vG7dX2UKGgGaAloD0MIpRXfUPjs+b+UhpRSlGgVSzJoFkdAeJEpY9xIa3V9lChoBmgJaA9DCHQoQ1VM5f2/lIaUUpRoFUsyaBZHQHiPTFyaNMp1fZQoaAZoCWgPQwh2ilWDMHf9v5SGlFKUaBVLMmgWR0B4m9qTKT0QdX2UKGgGaAloD0MIaTUk7rEUAMCUhpRSlGgVSzJoFkdAeJnl9BrvcHV9lChoBmgJaA9DCIZWJ2coTgDAlIaUUpRoFUsyaBZHQHiX9n9Nvfl1fZQoaAZoCWgPQwhubHak+g7/v5SGlFKUaBVLMmgWR0B4lhlbu+h5dX2UKGgGaAloD0MIRRDn4QSm+b+UhpRSlGgVSzJoFkdAeKK4pMHryHV9lChoBmgJaA9DCE1Ngjek8QHAlIaUUpRoFUsyaBZHQHigxciW3Sd1fZQoaAZoCWgPQwhtrprniFwAwJSGlFKUaBVLMmgWR0B4ntZ3cHnmdX2UKGgGaAloD0MI9+rjoe/u/L+UhpRSlGgVSzJoFkdAeJz5wwTM7nV9lChoBmgJaA9DCCYapOAppADAlIaUUpRoFUsyaBZHQHipWRigCfZ1fZQoaAZoCWgPQwigG5qy00/8v5SGlFKUaBVLMmgWR0B4p2Rp1zQvdX2UKGgGaAloD0MIhUGZRpOL/7+UhpRSlGgVSzJoFkdAeKV1gYxcmnV9lChoBmgJaA9DCMB1xYzwtvu/lIaUUpRoFUsyaBZHQHijmDDjzZp1fZQoaAZoCWgPQwiISE27mOb8v5SGlFKUaBVLMmgWR0B4sDRgJC0GdX2UKGgGaAloD0MI9G+X/bqT+7+UhpRSlGgVSzJoFkdAeK5AGSpzcXV9lChoBmgJaA9DCCHNWDSdXfy/lIaUUpRoFUsyaBZHQHisUXtShrZ1fZQoaAZoCWgPQwgtQNtq1pn7v5SGlFKUaBVLMmgWR0B4qnUQTVUddX2UKGgGaAloD0MIorWizXGu/r+UhpRSlGgVSzJoFkdAeLbHzYmLL3V9lChoBmgJaA9DCIqQup19ZQDAlIaUUpRoFUsyaBZHQHi00zsQd0d1fZQoaAZoCWgPQwj8/zhhwigCwJSGlFKUaBVLMmgWR0B4suXC0ngHdX2UKGgGaAloD0MIkZkLXB6LAMCUhpRSlGgVSzJoFkdAeLEKnNxEOXV9lChoBmgJaA9DCN5YUBiUCQDAlIaUUpRoFUsyaBZHQHi9oACGN711fZQoaAZoCWgPQwj/lZUmpaD9v5SGlFKUaBVLMmgWR0B4u62F36hydX2UKGgGaAloD0MIxcn9DkUB+r+UhpRSlGgVSzJoFkdAeLm+fh/AkHV9lChoBmgJaA9DCJbOh2cJMv2/lIaUUpRoFUsyaBZHQHi34YFaB7N1fZQoaAZoCWgPQwgs8BXdeg0BwJSGlFKUaBVLMmgWR0B4xHUkOZssdX2UKGgGaAloD0MI4UbKFkl7A8CUhpRSlGgVSzJoFkdAeMKAJLM9sHV9lChoBmgJaA9DCED2evfH+/+/lIaUUpRoFUsyaBZHQHjAkJng5zZ1fZQoaAZoCWgPQwjMJVXbTdAAwJSGlFKUaBVLMmgWR0B4vrM1TBIndX2UKGgGaAloD0MILPAV3XqN/L+UhpRSlGgVSzJoFkdAeMtPw/gR9XV9lChoBmgJaA9DCMOayqKwS/m/lIaUUpRoFUsyaBZHQHjJWxt52Qp1fZQoaAZoCWgPQwh9z0iERvD3v5SGlFKUaBVLMmgWR0B4x2xA0KqodX2UKGgGaAloD0MIXkccsoF0/7+UhpRSlGgVSzJoFkdAeMWPJJXhfnV9lChoBmgJaA9DCD4D6s2o+fy/lIaUUpRoFUsyaBZHQHjSJ/XoTwl1fZQoaAZoCWgPQwiG6BA4Eqj+v5SGlFKUaBVLMmgWR0B40DL+xW1ddX2UKGgGaAloD0MI9z/AWrWr+r+UhpRSlGgVSzJoFkdAeM5Dh99c8nV9lChoBmgJaA9DCPomTYOief2/lIaUUpRoFUsyaBZHQHjMZj+aScN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7117, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (786 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.5159086194587872, "std_reward": 0.26836969563259877, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T09:38:42.254575"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7ee9bc22d216409fcefcb2d4824660843e9896502395d5c8fd739b2ccf67ba4
3
+ size 3212