Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.52 +/- 0.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e4d627294f002dcd989c84e839445f5eee897d68b238be9f1510b5154de8e4e
|
3 |
+
size 108023
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3e7879c700>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f3e78790f60>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 142360,
|
45 |
+
"_total_timesteps": 200000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674120679033070278,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArqRXv/95eLwTuS8/LOwsvtNOzb6cWy2/wbSGvluMH7+kDBY/8VU+v1idxD34B3c9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlUCnv1GPyz0Mfv4+YUnkPnAJLr8GK9S/SNywPi2bQb8fXjc/4NU0v6/pOr4y3Pu+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACupFe//3l4vBO5Lz+5eEY/ch66P/wRxD8s7Cy+007NvpxbLb8U5hvA5gTUv0hll7/BtIa+W4wfv6QMFj/p646/94/9P63Ck77xVT6/WJ3EPfgHdz00BIk/yFv0PwoFXj+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[-0.84235656 -0.0151658 0.68641776]\n [-0.16886967 -0.400992 -0.6771791 ]\n [-0.2630978 -0.6232354 0.5861304 ]\n [-0.74349886 0.09600323 0.06031033]]",
|
60 |
+
"desired_goal": "[[-1.3066584 0.09939445 0.4970554 ]\n [ 0.44587234 -0.6798315 -1.657563 ]\n [ 0.3454306 -0.75627404 0.7162799 ]\n [-0.7063885 -0.18253206 -0.49191433]]",
|
61 |
+
"observation": "[[-0.84235656 -0.0151658 0.68641776 0.7752796 1.4540541 1.5317988 ]\n [-0.16886967 -0.400992 -0.6771791 -2.4359179 -1.6563995 -1.1827784 ]\n [-0.2630978 -0.6232354 0.5861304 -1.1165744 1.980956 -0.28859463]\n [-0.74349886 0.09600323 0.06031033 1.0704408 1.909051 0.8672644 ]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJIy9vahNp73n8xM+ykimvADZgL3dqOY98qDmPKdK7zypW9c9coRHvbKler28gR8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.09255245 -0.08169109 0.1444851 ]\n [-0.02029838 -0.06291389 0.11262677]\n [ 0.02815292 0.0292104 0.1051553 ]\n [-0.04871029 -0.06119318 0.15576833]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.2883,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8fRKWYb4/b+UhpRSlIwBbJRLMowBdJRHQHgsvJ7sv7F1fZQoaAZoCWgPQwjmPjkKEGUDwJSGlFKUaBVLMmgWR0B4KsdvKlpHdX2UKGgGaAloD0MIf/j578Er/7+UhpRSlGgVSzJoFkdAeCjYWcjJMnV9lChoBmgJaA9DCMYxkj1Czfu/lIaUUpRoFUsyaBZHQHgnAOFxn4B1fZQoaAZoCWgPQwhButi0UsgAwJSGlFKUaBVLMmgWR0B4M+jesPrfdX2UKGgGaAloD0MIkQw5tp6h/b+UhpRSlGgVSzJoFkdAeDHz+WGATnV9lChoBmgJaA9DCD6WPnRBHQDAlIaUUpRoFUsyaBZHQHgwBLoOhCd1fZQoaAZoCWgPQwhod0gxQKL8v5SGlFKUaBVLMmgWR0B4Lig/TspodX2UKGgGaAloD0MIak5eZAJ+/L+UhpRSlGgVSzJoFkdAeDrp97Wuo3V9lChoBmgJaA9DCPc8f9qoDvu/lIaUUpRoFUsyaBZHQHg49tVJcxF1fZQoaAZoCWgPQwgJh97i4V0BwJSGlFKUaBVLMmgWR0B4NwhzNliCdX2UKGgGaAloD0MIP26/fLJi/7+UhpRSlGgVSzJoFkdAeDUsNUfgaXV9lChoBmgJaA9DCEOrkzMUd/u/lIaUUpRoFUsyaBZHQHhBnzH0btJ1fZQoaAZoCWgPQwhr1a4Jaa0AwJSGlFKUaBVLMmgWR0B4P6tMfzSUdX2UKGgGaAloD0MIs2Dij6IO/L+UhpRSlGgVSzJoFkdAeD28VpKzzHV9lChoBmgJaA9DCJT7HYoCvf6/lIaUUpRoFUsyaBZHQHg732/SH/N1fZQoaAZoCWgPQwjp1QCloYb/v5SGlFKUaBVLMmgWR0B4SIQI2OyWdX2UKGgGaAloD0MI2zS214Je/L+UhpRSlGgVSzJoFkdAeEaPMjeKsXV9lChoBmgJaA9DCPA1BMdlnP+/lIaUUpRoFUsyaBZHQHhEoCU5dW11fZQoaAZoCWgPQwgG8uzyrc/9v5SGlFKUaBVLMmgWR0B4QsMw1zhhdX2UKGgGaAloD0MIoIfaNoxC+r+UhpRSlGgVSzJoFkdAeE+sLv1DjXV9lChoBmgJaA9DCEIIyJdQgfm/lIaUUpRoFUsyaBZHQHhNuFlCkXV1fZQoaAZoCWgPQwhr1a4JaQ0BwJSGlFKUaBVLMmgWR0B4S8yFfzBidX2UKGgGaAloD0MIzJvDtdojAcCUhpRSlGgVSzJoFkdAeEnz9jwx33V9lChoBmgJaA9DCFu21hcJ7fq/lIaUUpRoFUsyaBZHQHhWmYF7laN1fZQoaAZoCWgPQwjdRZiiXPoAwJSGlFKUaBVLMmgWR0B4VKSfUWl/dX2UKGgGaAloD0MIuY5xxcUR/r+UhpRSlGgVSzJoFkdAeFK1hb4agnV9lChoBmgJaA9DCKd4XFSLCAHAlIaUUpRoFUsyaBZHQHhQ2SdOIqN1fZQoaAZoCWgPQwi+iSE5mbj/v5SGlFKUaBVLMmgWR0B4XYZgogFHdX2UKGgGaAloD0MIDqSLTSuFAcCUhpRSlGgVSzJoFkdAeFuSZSeiBXV9lChoBmgJaA9DCEFjJlEveADAlIaUUpRoFUsyaBZHQHhZow22oeh1fZQoaAZoCWgPQwi3t1uSA7b+v5SGlFKUaBVLMmgWR0B4V8XVLBbfdX2UKGgGaAloD0MIDCJS0y4m+7+UhpRSlGgVSzJoFkdAeGSgaWHDaXV9lChoBmgJaA9DCJS/e0eNSfu/lIaUUpRoFUsyaBZHQHhirdnCfpV1fZQoaAZoCWgPQwh3FVJ+Uu37v5SGlFKUaBVLMmgWR0B4YMC+10DEdX2UKGgGaAloD0MIXp7OFaUE/L+UhpRSlGgVSzJoFkdAeF7j+rELpnV9lChoBmgJaA9DCF8JpMSurfq/lIaUUpRoFUsyaBZHQHhrrf1pTMt1fZQoaAZoCWgPQwjByqFFtjP9v5SGlFKUaBVLMmgWR0B4ablr/KhddX2UKGgGaAloD0MI20yFeCQe/b+UhpRSlGgVSzJoFkdAeGfK8+Roy3V9lChoBmgJaA9DCJf9utOdp/q/lIaUUpRoFUsyaBZHQHhl8JQcghd1fZQoaAZoCWgPQwjFjzF3LaH+v5SGlFKUaBVLMmgWR0B4cqrWAf+1dX2UKGgGaAloD0MIwVPIlXrWAMCUhpRSlGgVSzJoFkdAeHC2GZeAu3V9lChoBmgJaA9DCC9tOCwNfP2/lIaUUpRoFUsyaBZHQHhuxsMy8Bd1fZQoaAZoCWgPQwhcdR2qKQkAwJSGlFKUaBVLMmgWR0B4bOxqwhW6dX2UKGgGaAloD0MI93MK8rPR/7+UhpRSlGgVSzJoFkdAeHlc/MW43HV9lChoBmgJaA9DCIY7F0Z60fy/lIaUUpRoFUsyaBZHQHh3Z/LDAJt1fZQoaAZoCWgPQwi693DJcSf3v5SGlFKUaBVLMmgWR0B4dXlRxcVydX2UKGgGaAloD0MIXwzlRLuK/L+UhpRSlGgVSzJoFkdAeHOb3Gn4wnV9lChoBmgJaA9DCNaoh2h0x/u/lIaUUpRoFUsyaBZHQHiAVXmvGId1fZQoaAZoCWgPQwjzPLg7a/f8v5SGlFKUaBVLMmgWR0B4fmD5CWu6dX2UKGgGaAloD0MIIXam0HnNAsCUhpRSlGgVSzJoFkdAeHxyjpLVWnV9lChoBmgJaA9DCHi5iO/ELP2/lIaUUpRoFUsyaBZHQHh6lanrIHV1fZQoaAZoCWgPQwhTQrCqXv78v5SGlFKUaBVLMmgWR0B4h09W6shgdX2UKGgGaAloD0MI46jcRC3N/r+UhpRSlGgVSzJoFkdAeIVblA/s3XV9lChoBmgJaA9DCJPIPsiyoP+/lIaUUpRoFUsyaBZHQHiDbjkuHvd1fZQoaAZoCWgPQwiZu5aQD5oBwJSGlFKUaBVLMmgWR0B4gZIK+i8GdX2UKGgGaAloD0MIc0urIXGvAMCUhpRSlGgVSzJoFkdAeI4+I/JNkHV9lChoBmgJaA9DCAFp/wOsFf2/lIaUUpRoFUsyaBZHQHiMS08eS0V1fZQoaAZoCWgPQwgDCYofY27+v5SGlFKUaBVLMmgWR0B4iluxbB42dX2UKGgGaAloD0MIRNsxdVf2/7+UhpRSlGgVSzJoFkdAeIh+6iCaqnV9lChoBmgJaA9DCBXgu80bJ/2/lIaUUpRoFUsyaBZHQHiVDUExIrh1fZQoaAZoCWgPQwhGJ0ut99v/v5SGlFKUaBVLMmgWR0B4kxjI7vG7dX2UKGgGaAloD0MIpRXfUPjs+b+UhpRSlGgVSzJoFkdAeJEpY9xIa3V9lChoBmgJaA9DCHQoQ1VM5f2/lIaUUpRoFUsyaBZHQHiPTFyaNMp1fZQoaAZoCWgPQwh2ilWDMHf9v5SGlFKUaBVLMmgWR0B4m9qTKT0QdX2UKGgGaAloD0MIaTUk7rEUAMCUhpRSlGgVSzJoFkdAeJnl9BrvcHV9lChoBmgJaA9DCIZWJ2coTgDAlIaUUpRoFUsyaBZHQHiX9n9Nvfl1fZQoaAZoCWgPQwhubHak+g7/v5SGlFKUaBVLMmgWR0B4lhlbu+h5dX2UKGgGaAloD0MIRRDn4QSm+b+UhpRSlGgVSzJoFkdAeKK4pMHryHV9lChoBmgJaA9DCE1Ngjek8QHAlIaUUpRoFUsyaBZHQHigxciW3Sd1fZQoaAZoCWgPQwhtrprniFwAwJSGlFKUaBVLMmgWR0B4ntZ3cHnmdX2UKGgGaAloD0MI9+rjoe/u/L+UhpRSlGgVSzJoFkdAeJz5wwTM7nV9lChoBmgJaA9DCCYapOAppADAlIaUUpRoFUsyaBZHQHipWRigCfZ1fZQoaAZoCWgPQwigG5qy00/8v5SGlFKUaBVLMmgWR0B4p2Rp1zQvdX2UKGgGaAloD0MIhUGZRpOL/7+UhpRSlGgVSzJoFkdAeKV1gYxcmnV9lChoBmgJaA9DCMB1xYzwtvu/lIaUUpRoFUsyaBZHQHijmDDjzZp1fZQoaAZoCWgPQwiISE27mOb8v5SGlFKUaBVLMmgWR0B4sDRgJC0GdX2UKGgGaAloD0MI9G+X/bqT+7+UhpRSlGgVSzJoFkdAeK5AGSpzcXV9lChoBmgJaA9DCCHNWDSdXfy/lIaUUpRoFUsyaBZHQHisUXtShrZ1fZQoaAZoCWgPQwgtQNtq1pn7v5SGlFKUaBVLMmgWR0B4qnUQTVUddX2UKGgGaAloD0MIorWizXGu/r+UhpRSlGgVSzJoFkdAeLbHzYmLL3V9lChoBmgJaA9DCIqQup19ZQDAlIaUUpRoFUsyaBZHQHi00zsQd0d1fZQoaAZoCWgPQwj8/zhhwigCwJSGlFKUaBVLMmgWR0B4suXC0ngHdX2UKGgGaAloD0MIkZkLXB6LAMCUhpRSlGgVSzJoFkdAeLEKnNxEOXV9lChoBmgJaA9DCN5YUBiUCQDAlIaUUpRoFUsyaBZHQHi9oACGN711fZQoaAZoCWgPQwj/lZUmpaD9v5SGlFKUaBVLMmgWR0B4u62F36hydX2UKGgGaAloD0MIxcn9DkUB+r+UhpRSlGgVSzJoFkdAeLm+fh/AkHV9lChoBmgJaA9DCJbOh2cJMv2/lIaUUpRoFUsyaBZHQHi34YFaB7N1fZQoaAZoCWgPQwgs8BXdeg0BwJSGlFKUaBVLMmgWR0B4xHUkOZssdX2UKGgGaAloD0MI4UbKFkl7A8CUhpRSlGgVSzJoFkdAeMKAJLM9sHV9lChoBmgJaA9DCED2evfH+/+/lIaUUpRoFUsyaBZHQHjAkJng5zZ1fZQoaAZoCWgPQwjMJVXbTdAAwJSGlFKUaBVLMmgWR0B4vrM1TBIndX2UKGgGaAloD0MILPAV3XqN/L+UhpRSlGgVSzJoFkdAeMtPw/gR9XV9lChoBmgJaA9DCMOayqKwS/m/lIaUUpRoFUsyaBZHQHjJWxt52Qp1fZQoaAZoCWgPQwh9z0iERvD3v5SGlFKUaBVLMmgWR0B4x2xA0KqodX2UKGgGaAloD0MIXkccsoF0/7+UhpRSlGgVSzJoFkdAeMWPJJXhfnV9lChoBmgJaA9DCD4D6s2o+fy/lIaUUpRoFUsyaBZHQHjSJ/XoTwl1fZQoaAZoCWgPQwiG6BA4Eqj+v5SGlFKUaBVLMmgWR0B40DL+xW1ddX2UKGgGaAloD0MI9z/AWrWr+r+UhpRSlGgVSzJoFkdAeM5Dh99c8nV9lChoBmgJaA9DCPomTYOief2/lIaUUpRoFUsyaBZHQHjMZj+aScN1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 7117,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5af8cd1f4c27d85efba043b0ba31d863c0eab1dc3109bf94e6355c6a3d920b18
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91f58fe9c6318e335fe20317b030c6563ffd4398085736a8a313d39192ab800c
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3e7879c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3e78790f60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 142360, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674120679033070278, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArqRXv/95eLwTuS8/LOwsvtNOzb6cWy2/wbSGvluMH7+kDBY/8VU+v1idxD34B3c9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlUCnv1GPyz0Mfv4+YUnkPnAJLr8GK9S/SNywPi2bQb8fXjc/4NU0v6/pOr4y3Pu+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACupFe//3l4vBO5Lz+5eEY/ch66P/wRxD8s7Cy+007NvpxbLb8U5hvA5gTUv0hll7/BtIa+W4wfv6QMFj/p646/94/9P63Ck77xVT6/WJ3EPfgHdz00BIk/yFv0PwoFXj+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.84235656 -0.0151658 0.68641776]\n [-0.16886967 -0.400992 -0.6771791 ]\n [-0.2630978 -0.6232354 0.5861304 ]\n [-0.74349886 0.09600323 0.06031033]]", "desired_goal": "[[-1.3066584 0.09939445 0.4970554 ]\n [ 0.44587234 -0.6798315 -1.657563 ]\n [ 0.3454306 -0.75627404 0.7162799 ]\n [-0.7063885 -0.18253206 -0.49191433]]", "observation": "[[-0.84235656 -0.0151658 0.68641776 0.7752796 1.4540541 1.5317988 ]\n [-0.16886967 -0.400992 -0.6771791 -2.4359179 -1.6563995 -1.1827784 ]\n [-0.2630978 -0.6232354 0.5861304 -1.1165744 1.980956 -0.28859463]\n [-0.74349886 0.09600323 0.06031033 1.0704408 1.909051 0.8672644 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJIy9vahNp73n8xM+ykimvADZgL3dqOY98qDmPKdK7zypW9c9coRHvbKler28gR8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09255245 -0.08169109 0.1444851 ]\n [-0.02029838 -0.06291389 0.11262677]\n [ 0.02815292 0.0292104 0.1051553 ]\n [-0.04871029 -0.06119318 0.15576833]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.2883, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8fRKWYb4/b+UhpRSlIwBbJRLMowBdJRHQHgsvJ7sv7F1fZQoaAZoCWgPQwjmPjkKEGUDwJSGlFKUaBVLMmgWR0B4KsdvKlpHdX2UKGgGaAloD0MIf/j578Er/7+UhpRSlGgVSzJoFkdAeCjYWcjJMnV9lChoBmgJaA9DCMYxkj1Czfu/lIaUUpRoFUsyaBZHQHgnAOFxn4B1fZQoaAZoCWgPQwhButi0UsgAwJSGlFKUaBVLMmgWR0B4M+jesPrfdX2UKGgGaAloD0MIkQw5tp6h/b+UhpRSlGgVSzJoFkdAeDHz+WGATnV9lChoBmgJaA9DCD6WPnRBHQDAlIaUUpRoFUsyaBZHQHgwBLoOhCd1fZQoaAZoCWgPQwhod0gxQKL8v5SGlFKUaBVLMmgWR0B4Lig/TspodX2UKGgGaAloD0MIak5eZAJ+/L+UhpRSlGgVSzJoFkdAeDrp97Wuo3V9lChoBmgJaA9DCPc8f9qoDvu/lIaUUpRoFUsyaBZHQHg49tVJcxF1fZQoaAZoCWgPQwgJh97i4V0BwJSGlFKUaBVLMmgWR0B4NwhzNliCdX2UKGgGaAloD0MIP26/fLJi/7+UhpRSlGgVSzJoFkdAeDUsNUfgaXV9lChoBmgJaA9DCEOrkzMUd/u/lIaUUpRoFUsyaBZHQHhBnzH0btJ1fZQoaAZoCWgPQwhr1a4Jaa0AwJSGlFKUaBVLMmgWR0B4P6tMfzSUdX2UKGgGaAloD0MIs2Dij6IO/L+UhpRSlGgVSzJoFkdAeD28VpKzzHV9lChoBmgJaA9DCJT7HYoCvf6/lIaUUpRoFUsyaBZHQHg732/SH/N1fZQoaAZoCWgPQwjp1QCloYb/v5SGlFKUaBVLMmgWR0B4SIQI2OyWdX2UKGgGaAloD0MI2zS214Je/L+UhpRSlGgVSzJoFkdAeEaPMjeKsXV9lChoBmgJaA9DCPA1BMdlnP+/lIaUUpRoFUsyaBZHQHhEoCU5dW11fZQoaAZoCWgPQwgG8uzyrc/9v5SGlFKUaBVLMmgWR0B4QsMw1zhhdX2UKGgGaAloD0MIoIfaNoxC+r+UhpRSlGgVSzJoFkdAeE+sLv1DjXV9lChoBmgJaA9DCEIIyJdQgfm/lIaUUpRoFUsyaBZHQHhNuFlCkXV1fZQoaAZoCWgPQwhr1a4JaQ0BwJSGlFKUaBVLMmgWR0B4S8yFfzBidX2UKGgGaAloD0MIzJvDtdojAcCUhpRSlGgVSzJoFkdAeEnz9jwx33V9lChoBmgJaA9DCFu21hcJ7fq/lIaUUpRoFUsyaBZHQHhWmYF7laN1fZQoaAZoCWgPQwjdRZiiXPoAwJSGlFKUaBVLMmgWR0B4VKSfUWl/dX2UKGgGaAloD0MIuY5xxcUR/r+UhpRSlGgVSzJoFkdAeFK1hb4agnV9lChoBmgJaA9DCKd4XFSLCAHAlIaUUpRoFUsyaBZHQHhQ2SdOIqN1fZQoaAZoCWgPQwi+iSE5mbj/v5SGlFKUaBVLMmgWR0B4XYZgogFHdX2UKGgGaAloD0MIDqSLTSuFAcCUhpRSlGgVSzJoFkdAeFuSZSeiBXV9lChoBmgJaA9DCEFjJlEveADAlIaUUpRoFUsyaBZHQHhZow22oeh1fZQoaAZoCWgPQwi3t1uSA7b+v5SGlFKUaBVLMmgWR0B4V8XVLBbfdX2UKGgGaAloD0MIDCJS0y4m+7+UhpRSlGgVSzJoFkdAeGSgaWHDaXV9lChoBmgJaA9DCJS/e0eNSfu/lIaUUpRoFUsyaBZHQHhirdnCfpV1fZQoaAZoCWgPQwh3FVJ+Uu37v5SGlFKUaBVLMmgWR0B4YMC+10DEdX2UKGgGaAloD0MIXp7OFaUE/L+UhpRSlGgVSzJoFkdAeF7j+rELpnV9lChoBmgJaA9DCF8JpMSurfq/lIaUUpRoFUsyaBZHQHhrrf1pTMt1fZQoaAZoCWgPQwjByqFFtjP9v5SGlFKUaBVLMmgWR0B4ablr/KhddX2UKGgGaAloD0MI20yFeCQe/b+UhpRSlGgVSzJoFkdAeGfK8+Roy3V9lChoBmgJaA9DCJf9utOdp/q/lIaUUpRoFUsyaBZHQHhl8JQcghd1fZQoaAZoCWgPQwjFjzF3LaH+v5SGlFKUaBVLMmgWR0B4cqrWAf+1dX2UKGgGaAloD0MIwVPIlXrWAMCUhpRSlGgVSzJoFkdAeHC2GZeAu3V9lChoBmgJaA9DCC9tOCwNfP2/lIaUUpRoFUsyaBZHQHhuxsMy8Bd1fZQoaAZoCWgPQwhcdR2qKQkAwJSGlFKUaBVLMmgWR0B4bOxqwhW6dX2UKGgGaAloD0MI93MK8rPR/7+UhpRSlGgVSzJoFkdAeHlc/MW43HV9lChoBmgJaA9DCIY7F0Z60fy/lIaUUpRoFUsyaBZHQHh3Z/LDAJt1fZQoaAZoCWgPQwi693DJcSf3v5SGlFKUaBVLMmgWR0B4dXlRxcVydX2UKGgGaAloD0MIXwzlRLuK/L+UhpRSlGgVSzJoFkdAeHOb3Gn4wnV9lChoBmgJaA9DCNaoh2h0x/u/lIaUUpRoFUsyaBZHQHiAVXmvGId1fZQoaAZoCWgPQwjzPLg7a/f8v5SGlFKUaBVLMmgWR0B4fmD5CWu6dX2UKGgGaAloD0MIIXam0HnNAsCUhpRSlGgVSzJoFkdAeHxyjpLVWnV9lChoBmgJaA9DCHi5iO/ELP2/lIaUUpRoFUsyaBZHQHh6lanrIHV1fZQoaAZoCWgPQwhTQrCqXv78v5SGlFKUaBVLMmgWR0B4h09W6shgdX2UKGgGaAloD0MI46jcRC3N/r+UhpRSlGgVSzJoFkdAeIVblA/s3XV9lChoBmgJaA9DCJPIPsiyoP+/lIaUUpRoFUsyaBZHQHiDbjkuHvd1fZQoaAZoCWgPQwiZu5aQD5oBwJSGlFKUaBVLMmgWR0B4gZIK+i8GdX2UKGgGaAloD0MIc0urIXGvAMCUhpRSlGgVSzJoFkdAeI4+I/JNkHV9lChoBmgJaA9DCAFp/wOsFf2/lIaUUpRoFUsyaBZHQHiMS08eS0V1fZQoaAZoCWgPQwgDCYofY27+v5SGlFKUaBVLMmgWR0B4iluxbB42dX2UKGgGaAloD0MIRNsxdVf2/7+UhpRSlGgVSzJoFkdAeIh+6iCaqnV9lChoBmgJaA9DCBXgu80bJ/2/lIaUUpRoFUsyaBZHQHiVDUExIrh1fZQoaAZoCWgPQwhGJ0ut99v/v5SGlFKUaBVLMmgWR0B4kxjI7vG7dX2UKGgGaAloD0MIpRXfUPjs+b+UhpRSlGgVSzJoFkdAeJEpY9xIa3V9lChoBmgJaA9DCHQoQ1VM5f2/lIaUUpRoFUsyaBZHQHiPTFyaNMp1fZQoaAZoCWgPQwh2ilWDMHf9v5SGlFKUaBVLMmgWR0B4m9qTKT0QdX2UKGgGaAloD0MIaTUk7rEUAMCUhpRSlGgVSzJoFkdAeJnl9BrvcHV9lChoBmgJaA9DCIZWJ2coTgDAlIaUUpRoFUsyaBZHQHiX9n9Nvfl1fZQoaAZoCWgPQwhubHak+g7/v5SGlFKUaBVLMmgWR0B4lhlbu+h5dX2UKGgGaAloD0MIRRDn4QSm+b+UhpRSlGgVSzJoFkdAeKK4pMHryHV9lChoBmgJaA9DCE1Ngjek8QHAlIaUUpRoFUsyaBZHQHigxciW3Sd1fZQoaAZoCWgPQwhtrprniFwAwJSGlFKUaBVLMmgWR0B4ntZ3cHnmdX2UKGgGaAloD0MI9+rjoe/u/L+UhpRSlGgVSzJoFkdAeJz5wwTM7nV9lChoBmgJaA9DCCYapOAppADAlIaUUpRoFUsyaBZHQHipWRigCfZ1fZQoaAZoCWgPQwigG5qy00/8v5SGlFKUaBVLMmgWR0B4p2Rp1zQvdX2UKGgGaAloD0MIhUGZRpOL/7+UhpRSlGgVSzJoFkdAeKV1gYxcmnV9lChoBmgJaA9DCMB1xYzwtvu/lIaUUpRoFUsyaBZHQHijmDDjzZp1fZQoaAZoCWgPQwiISE27mOb8v5SGlFKUaBVLMmgWR0B4sDRgJC0GdX2UKGgGaAloD0MI9G+X/bqT+7+UhpRSlGgVSzJoFkdAeK5AGSpzcXV9lChoBmgJaA9DCCHNWDSdXfy/lIaUUpRoFUsyaBZHQHisUXtShrZ1fZQoaAZoCWgPQwgtQNtq1pn7v5SGlFKUaBVLMmgWR0B4qnUQTVUddX2UKGgGaAloD0MIorWizXGu/r+UhpRSlGgVSzJoFkdAeLbHzYmLL3V9lChoBmgJaA9DCIqQup19ZQDAlIaUUpRoFUsyaBZHQHi00zsQd0d1fZQoaAZoCWgPQwj8/zhhwigCwJSGlFKUaBVLMmgWR0B4suXC0ngHdX2UKGgGaAloD0MIkZkLXB6LAMCUhpRSlGgVSzJoFkdAeLEKnNxEOXV9lChoBmgJaA9DCN5YUBiUCQDAlIaUUpRoFUsyaBZHQHi9oACGN711fZQoaAZoCWgPQwj/lZUmpaD9v5SGlFKUaBVLMmgWR0B4u62F36hydX2UKGgGaAloD0MIxcn9DkUB+r+UhpRSlGgVSzJoFkdAeLm+fh/AkHV9lChoBmgJaA9DCJbOh2cJMv2/lIaUUpRoFUsyaBZHQHi34YFaB7N1fZQoaAZoCWgPQwgs8BXdeg0BwJSGlFKUaBVLMmgWR0B4xHUkOZssdX2UKGgGaAloD0MI4UbKFkl7A8CUhpRSlGgVSzJoFkdAeMKAJLM9sHV9lChoBmgJaA9DCED2evfH+/+/lIaUUpRoFUsyaBZHQHjAkJng5zZ1fZQoaAZoCWgPQwjMJVXbTdAAwJSGlFKUaBVLMmgWR0B4vrM1TBIndX2UKGgGaAloD0MILPAV3XqN/L+UhpRSlGgVSzJoFkdAeMtPw/gR9XV9lChoBmgJaA9DCMOayqKwS/m/lIaUUpRoFUsyaBZHQHjJWxt52Qp1fZQoaAZoCWgPQwh9z0iERvD3v5SGlFKUaBVLMmgWR0B4x2xA0KqodX2UKGgGaAloD0MIXkccsoF0/7+UhpRSlGgVSzJoFkdAeMWPJJXhfnV9lChoBmgJaA9DCD4D6s2o+fy/lIaUUpRoFUsyaBZHQHjSJ/XoTwl1fZQoaAZoCWgPQwiG6BA4Eqj+v5SGlFKUaBVLMmgWR0B40DL+xW1ddX2UKGgGaAloD0MI9z/AWrWr+r+UhpRSlGgVSzJoFkdAeM5Dh99c8nV9lChoBmgJaA9DCPomTYOief2/lIaUUpRoFUsyaBZHQHjMZj+aScN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7117, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (786 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.5159086194587872, "std_reward": 0.26836969563259877, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T09:38:42.254575"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7ee9bc22d216409fcefcb2d4824660843e9896502395d5c8fd739b2ccf67ba4
|
3 |
+
size 3212
|