File size: 7,037 Bytes
569d6ee a575285 569d6ee a575285 569d6ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
license: apache-2.0
library_name: peft
tags:
- finetuned
- multimodal
- llava
base_model: mistralai/Mistral-7B-Instruct-v0.1
dataset: sshh12/llava-finetune
inference: false
pipeline_tag: image-text-to-text
---
These are weights for a version of `mistralai/Mistral-7B-Instruct-v0.1` finetuned for multimodal applications.
### Modalities
* CLIPVisionModality (use `<image>` in text and provide `images`, encoded as 10 tokens)
### Usage
GitHub: https://github.com/sshh12/multi_token (includes training scripts and basic inference server)
### Dataset
sshh12/llava-finetune (544610 examples)
```
{'id': '000000033471', 'images': ['/data/llava_finetune_data/images/coco/train2017/train2017/000000033471.jpg'], 'messages': [{'content': '<image>\nWhat are the colors of the bus in the image?', 'role': 'user'}, {'content': 'The bus in the image is white and red.', 'role': 'assistant'}, {'content': 'What feature can be seen on the back of the bus?', 'role': 'user'}, {'content': 'The back of the bus features an advertisement.', 'role': 'assistant'}, {'content': 'Is the bus driving down the street or pulled off to the side?', 'role': 'user'}, {'content': 'The bus is driving down the street, which is crowded with people and other vehicles.', 'role': 'assistant'}]}
```
### Training Device(s)
```
name, pci.bus_id, vbios_version
NVIDIA RTX A6000, 00000000:02:00.0, 94.02.5C.00.02
```
### Model
```
MistralLMMForCausalLM.model =
PeftModelForCausalLM(
(base_model): LoraModel(
(model): MistralLMMForCausalLM(
(model): MistralLMMModel(
(embed_tokens): Embedding(32000, 4096)
(layers): ModuleList(
(0-31): 32 x MistralDecoderLayer(
(self_attn): MistralAttention(
(q_proj): lora.Linear(
(base_layer): Linear(in_features=4096, out_features=4096, bias=False)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=64, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=64, out_features=4096, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(k_proj): lora.Linear(
(base_layer): Linear(in_features=4096, out_features=1024, bias=False)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=64, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=64, out_features=1024, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(v_proj): lora.Linear(
(base_layer): Linear(in_features=4096, out_features=1024, bias=False)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=64, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=64, out_features=1024, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(o_proj): lora.Linear(
(base_layer): Linear(in_features=4096, out_features=4096, bias=False)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=64, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=64, out_features=4096, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(rotary_emb): MistralRotaryEmbedding()
)
(mlp): MistralMLP(
(gate_proj): lora.Linear(
(base_layer): Linear(in_features=4096, out_features=14336, bias=False)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=64, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=64, out_features=14336, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(up_proj): lora.Linear(
(base_layer): Linear(in_features=4096, out_features=14336, bias=False)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=64, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=64, out_features=14336, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(down_proj): lora.Linear(
(base_layer): Linear(in_features=14336, out_features=4096, bias=False)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=14336, out_features=64, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=64, out_features=4096, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(act_fn): SiLUActivation()
)
(input_layernorm): MistralRMSNorm()
(post_attention_layernorm): MistralRMSNorm()
)
)
(norm): MistralRMSNorm()
(vision_clip_lmm_projector): _MLPVectorProjector(
(mlps): ModuleList(
(0-9): 10 x Sequential(
(0): Linear(in_features=1024, out_features=4096, bias=True)
(1): GELU(approximate='none')
(2): Linear(in_features=4096, out_features=4096, bias=True)
)
)
)
)
(lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)
)
)
```
### Framework versions
- PEFT 0.7.0 |