File size: 7,271 Bytes
c20adeb
09c6f4d
 
 
 
 
 
 
 
 
c20adeb
 
09c6f4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: other
base_model: sayeed99/segformer-b3-fashion
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b3-fashion-finetuned-polo-segments-v1.5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b3-fashion-finetuned-polo-segments-v1.5

This model is a fine-tuned version of [sayeed99/segformer-b3-fashion](https://huggingface.co/sayeed99/segformer-b3-fashion) on the sshk/polo-badges-segmentation dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1007
- Mean Iou: 0.8404
- Mean Accuracy: 0.9136
- Overall Accuracy: 0.9704
- Accuracy Unlabeled: nan
- Accuracy Collar: 0.8876
- Accuracy Polo: 0.9746
- Accuracy Lines-cuff: 0.7358
- Accuracy Lines-chest: 0.9360
- Accuracy Human: 0.9631
- Accuracy Background: 0.9848
- Accuracy Tape: nan
- Iou Unlabeled: nan
- Iou Collar: 0.7360
- Iou Polo: 0.9428
- Iou Lines-cuff: 0.6178
- Iou Lines-chest: 0.8353
- Iou Human: 0.9386
- Iou Background: 0.9718
- Iou Tape: nan

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Collar | Accuracy Polo | Accuracy Lines-cuff | Accuracy Lines-chest | Accuracy Human | Accuracy Background | Accuracy Tape | Iou Unlabeled | Iou Collar | Iou Polo | Iou Lines-cuff | Iou Lines-chest | Iou Human | Iou Background | Iou Tape |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:-------------------:|:--------------------:|:--------------:|:-------------------:|:-------------:|:-------------:|:----------:|:--------:|:--------------:|:---------------:|:---------:|:--------------:|:--------:|
| 0.1679        | 2.2222  | 20   | 0.2031          | 0.5532   | 0.5985        | 0.9492           | nan                | 0.6856          | 0.9707        | 0.0                 | 0.0022               | 0.9482         | 0.9843              | nan           | nan           | 0.5491     | 0.8882   | 0.0            | 0.0022          | 0.9192    | 0.9604         | nan      |
| 0.0921        | 4.4444  | 40   | 0.1359          | 0.7103   | 0.7618        | 0.9631           | nan                | 0.8586          | 0.9739        | 0.1373              | 0.6598               | 0.9577         | 0.9835              | nan           | nan           | 0.6786     | 0.9244   | 0.1373         | 0.6217          | 0.9305    | 0.9691         | nan      |
| 0.0603        | 6.6667  | 60   | 0.1166          | 0.8147   | 0.8651        | 0.9672           | nan                | 0.8436          | 0.9795        | 0.6385              | 0.7867               | 0.9586         | 0.9837              | nan           | nan           | 0.7114     | 0.9315   | 0.5955         | 0.7446          | 0.9352    | 0.9700         | nan      |
| 0.0581        | 8.8889  | 80   | 0.1121          | 0.8185   | 0.8809        | 0.9677           | nan                | 0.8363          | 0.9767        | 0.6995              | 0.8279               | 0.9594         | 0.9857              | nan           | nan           | 0.7091     | 0.9336   | 0.6009         | 0.7611          | 0.9357    | 0.9709         | nan      |
| 0.0445        | 11.1111 | 100  | 0.1047          | 0.8317   | 0.9033        | 0.9699           | nan                | 0.8719          | 0.9687        | 0.7198              | 0.9070               | 0.9686         | 0.9836              | nan           | nan           | 0.7263     | 0.9403   | 0.6081         | 0.8045          | 0.9390    | 0.9721         | nan      |
| 0.0456        | 13.3333 | 120  | 0.1055          | 0.8342   | 0.9151        | 0.9694           | nan                | 0.8931          | 0.9687        | 0.7391              | 0.9402               | 0.9614         | 0.9878              | nan           | nan           | 0.7285     | 0.9405   | 0.6102         | 0.8184          | 0.9371    | 0.9708         | nan      |
| 0.0443        | 15.5556 | 140  | 0.1034          | 0.8349   | 0.9039        | 0.9700           | nan                | 0.8740          | 0.9742        | 0.7208              | 0.9059               | 0.9636         | 0.9851              | nan           | nan           | 0.7324     | 0.9411   | 0.6091         | 0.8166          | 0.9384    | 0.9717         | nan      |
| 0.0475        | 17.7778 | 160  | 0.1032          | 0.8384   | 0.9139        | 0.9699           | nan                | 0.8885          | 0.9738        | 0.7383              | 0.9356               | 0.9604         | 0.9868              | nan           | nan           | 0.7341     | 0.9409   | 0.6160         | 0.8300          | 0.9377    | 0.9717         | nan      |
| 0.0411        | 20.0    | 180  | 0.1018          | 0.8403   | 0.9150        | 0.9702           | nan                | 0.8911          | 0.9770        | 0.7389              | 0.9378               | 0.9592         | 0.9862              | nan           | nan           | 0.7362     | 0.9417   | 0.6194         | 0.8346          | 0.9383    | 0.9716         | nan      |
| 0.0345        | 22.2222 | 200  | 0.1003          | 0.8397   | 0.9112        | 0.9704           | nan                | 0.8885          | 0.9768        | 0.7359              | 0.9201               | 0.9625         | 0.9836              | nan           | nan           | 0.7355     | 0.9423   | 0.6157         | 0.8345          | 0.9387    | 0.9716         | nan      |
| 0.0403        | 24.4444 | 220  | 0.1007          | 0.8397   | 0.9140        | 0.9705           | nan                | 0.8826          | 0.9745        | 0.7393              | 0.9392               | 0.9633         | 0.9851              | nan           | nan           | 0.7353     | 0.9434   | 0.6172         | 0.8319          | 0.9388    | 0.9716         | nan      |
| 0.0563        | 26.6667 | 240  | 0.1009          | 0.8406   | 0.9140        | 0.9704           | nan                | 0.8914          | 0.9765        | 0.7306              | 0.9391               | 0.9603         | 0.9859              | nan           | nan           | 0.7360     | 0.9427   | 0.6202         | 0.8344          | 0.9383    | 0.9718         | nan      |
| 0.0464        | 28.8889 | 260  | 0.1007          | 0.8404   | 0.9136        | 0.9704           | nan                | 0.8876          | 0.9746        | 0.7358              | 0.9360               | 0.9631         | 0.9848              | nan           | nan           | 0.7360     | 0.9428   | 0.6178         | 0.8353          | 0.9386    | 0.9718         | nan      |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1