ssmits commited on
Commit
0981240
·
verified ·
1 Parent(s): 888dbfa

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: qwen
4
+ license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ base_model:
9
+ - ssmits/Qwen2.5-95B-Instruct
10
+ tags:
11
+ - chat
12
+ ---
13
+
14
+ # Qwen-95B
15
+
16
+ Qwen-95B is a [Qwen/Qwen-72B](https://huggingface.co/Qwen/Qwen-72B) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main).
17
+
18
+ It was inspired by large merges like:
19
+
20
+ - [alpindale/goliath-120b](https://huggingface.co/alpindale/goliath-120b)
21
+ - [cognitivecomputations/MegaDolphin-120b](https://huggingface.co/cognitivecomputations/MegaDolphin-120b)
22
+ - [mlabonne/Meta-Llama-3-120B-Instruct](https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct)
23
+
24
+ Special thanks to [Eric Hartford](https://huggingface.co/ehartford) for both inspiring and evaluating the original model, to [Charles Goddard](https://huggingface.co/chargoddard) for creating MergeKit, and to [Mathieu Labonne](https://huggingface.co/mlabonne) for creating the Meta-Llama-3-120B-Instruct model that served as the main inspiration for this merge.
25
+
26
+ ## 🔍 Applications
27
+
28
+ This model is recommended for creative writing tasks. It uses the Qwen chat template with a default context window of 8K (can be extended with rope theta).
29
+
30
+ The model is generally quite creative and has a good writing style. It may occasionally output typos and show a preference for uppercase text.
31
+
32
+ ## ⚡ Quantized models
33
+
34
+ To be quantized.
35
+
36
+ * **GGUF**: [Link to GGUF model]
37
+ * **EXL2**: [Link to EXL2 model]
38
+ * **mlx**: [Link to mlx model]
39
+
40
+ ## 🏆 Evaluation
41
+ This model has yet to be thoroughly evaluated. It is expected to excel in creative writing but may have limitations in other tasks. Use it with caution and don't expect it to outperform state-of-the-art models outside of specific creative use cases.
42
+
43
+ Once the model is created and tested, this section will be updated with:
44
+
45
+ * Links to evaluation threads on social media platforms
46
+ * Examples of the model's performance in creative writing tasks
47
+ * Comparisons with other large language models in various applications
48
+ * Community feedback and use cases
49
+
50
+ We encourage users to share their experiences and evaluations to help build a comprehensive understanding of the model's capabilities and limitations.
51
+
52
+ ## 🧩 Configuration
53
+
54
+ ```yaml
55
+ slices:
56
+ - sources:
57
+ - layer_range: [0, 10]
58
+ model: Qwen/Qwen2.5-72B-Instruct
59
+ - sources:
60
+ - layer_range: [5, 15]
61
+ model: Qwen/Qwen2.5-72B-Instruct
62
+ - sources:
63
+ - layer_range: [10, 20]
64
+ model: Qwen/Qwen2.5-72B-Instruct
65
+ - sources:
66
+ - layer_range: [15, 25]
67
+ model: Qwen/Qwen2.5-72B-Instruct
68
+ - sources:
69
+ - layer_range: [20, 30]
70
+ model: Qwen/Qwen2.5-72B-Instruct
71
+ - sources:
72
+ - layer_range: [25, 80]
73
+ model: Qwen/Qwen2.5-72B-Instruct
74
+ merge_method: passthrough
75
+ dtype: bfloat16
76
+ ```
77
+
78
+ ## 💻 Usage
79
+
80
+ ```python
81
+ !pip install -qU transformers accelerate
82
+
83
+ from transformers import AutoTokenizer
84
+ import transformers
85
+ import torch
86
+
87
+ model = "ssmits/Qwen2.5-95B-Instruct"
88
+ messages = [{"role": "user", "content": "What is a large language model?"}]
89
+
90
+ tokenizer = AutoTokenizer.from_pretrained(model)
91
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
92
+ pipeline = transformers.pipeline(
93
+ "text-generation",
94
+ model=model,
95
+ torch_dtype=torch.float16,
96
+ device_map="auto",
97
+ )
98
+
99
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
100
+ print(outputs[0]["generated_text"])