ssw1591 commited on
Commit
9f48cd7
·
1 Parent(s): aa4ec0a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.85 +/- 25.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ec6710af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ec6710b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ec6710c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ec6710ca0>", "_build": "<function ActorCriticPolicy._build at 0x7f8ec6710d30>", "forward": "<function ActorCriticPolicy.forward at 0x7f8ec6710dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ec6710e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ec6710ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8ec6710f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ec6712040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ec67120d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ec6712160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8ec66feae0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673951155157310453, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM1Bb4Uc3A/oi0zvdIY4r7R8ti9C5bUPQAAAAAAAAAAzZKWvcHMFT+ly4I9FgC9vnKr3bvGAjW9AAAAAAAAAACa5B89FEqZuto8gDlqfYY0PIEOO5QFlLgAAIA/AACAPxrYej3smZW5gO7aOjzSRzX87py5P+YBugAAgD8AAIA/TXxUPVwbfrrdDSy61ccttWoFp7kyAkk5AACAPwAAgD8z/I68Kag+ulKfmbpOOay2INnjuvoKGzYAAIA/AACAP2bywrtcXwG64jnLO1+oXTh0gvM6IDO0twAAgD8AAIA/zRakvPaodbg2FJU6QjioNdk35roUerO5AACAPwAAgD9mYFk9e8qfukLq2rgw+QG0Rz+IOZMh+zcAAIA/AACAP40qN75AMY8/j7KhvpUQ5b4po3q+llgiPAAAAAAAAAAAM6OHvEi3pbr27Dq6N0kPNlGRIboSjFY5AACAPwAAgD+aN6Q9XD9CujaZqTnGxg61ka4AO15ABLQAAIA/AACAP2Z8tbxcb1q6nMGwuvVN3bUqCwy7IoPPOQAAgD8AAIA/IBtnPuYXIj8WxGG+GvWovouMPjwry3m9AAAAAAAAAABmQtS79pgiunI6G7ppNv21ipUPu5IpOTkAAIA/AACAPzP5nTwflfK5xou5OdmPhDaDdmg7Dm/auAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZYnOMotsY0CUhpRSlIwBbJRN6AOMAXSUR0CR0mPeYUnHdX2UKGgGaAloD0MIDp4JTRKSY0CUhpRSlGgVTegDaBZHQJHYFSxZ+x51fZQoaAZoCWgPQwhvSnmtBEhgQJSGlFKUaBVN6ANoFkdAkdmDrzGxU3V9lChoBmgJaA9DCJ54zhaQNmhAlIaUUpRoFU3oA2gWR0CR2ZSDh99ddX2UKGgGaAloD0MIoFOQn40vYkCUhpRSlGgVTegDaBZHQJHaNw4sEq51fZQoaAZoCWgPQwj/rs+cdb5jQJSGlFKUaBVN6ANoFkdAkduCThYNiHV9lChoBmgJaA9DCN18I7pn119AlIaUUpRoFU3oA2gWR0CR3CRjz7MxdX2UKGgGaAloD0MIh+C4jJvYZUCUhpRSlGgVTegDaBZHQJHe5og3cYZ1fZQoaAZoCWgPQwj2e2KdKnJoQJSGlFKUaBVN6ANoFkdAkd+3vUjLS3V9lChoBmgJaA9DCDgteNFXOGRAlIaUUpRoFU3oA2gWR0CR4s9nK4hEdX2UKGgGaAloD0MIuU+OAsTgZECUhpRSlGgVTegDaBZHQJHjNRYRuj11fZQoaAZoCWgPQwjJk6RrpppgQJSGlFKUaBVN6ANoFkdAkeYtOmBOHnV9lChoBmgJaA9DCLznwHKExERAlIaUUpRoFUvDaBZHQJHtSr7wazh1fZQoaAZoCWgPQwhHVRNEXSNnQJSGlFKUaBVN6ANoFkdAkhEcMiKR+3V9lChoBmgJaA9DCB/zAYHOyGRAlIaUUpRoFU3oA2gWR0CSEcUVSGahdX2UKGgGaAloD0MIs9DOaRZMYECUhpRSlGgVTegDaBZHQJIZX+98JD51fZQoaAZoCWgPQwh+4CpPoG9iQJSGlFKUaBVN6ANoFkdAkhxpGKAJ9nV9lChoBmgJaA9DCDnQQ20b/GVAlIaUUpRoFU3oA2gWR0CSHvqVyFPBdX2UKGgGaAloD0MITTJyFnYSY0CUhpRSlGgVTegDaBZHQJIlDEk0Jnh1fZQoaAZoCWgPQwjJ6IAk7C1kQJSGlFKUaBVN6ANoFkdAkibBsEaESXV9lChoBmgJaA9DCFQ3F3/bTmNAlIaUUpRoFU3oA2gWR0CSJtSZSeiBdX2UKGgGaAloD0MIaFn3j4VIZECUhpRSlGgVTegDaBZHQJInhwo9cKR1fZQoaAZoCWgPQwjjbaXX5lZkQJSGlFKUaBVN6ANoFkdAkikeyJKraXV9lChoBmgJaA9DCI7LuKkB2mJAlIaUUpRoFU3oA2gWR0CSKedE9dNWdX2UKGgGaAloD0MIXqCkwAJYZECUhpRSlGgVTegDaBZHQJItVXQtz0Z1fZQoaAZoCWgPQwg+7IUCNj1lQJSGlFKUaBVN6ANoFkdAki5ZQUHpr3V9lChoBmgJaA9DCL3jFB3JZl5AlIaUUpRoFU3oA2gWR0CSMppZOi35dX2UKGgGaAloD0MIxeQNMPOYVkCUhpRSlGgVS+5oFkdAkjPRHPNVznV9lChoBmgJaA9DCFDIzttYvWVAlIaUUpRoFU3oA2gWR0CSNeBfKISEdX2UKGgGaAloD0MIoWez6vPwY0CUhpRSlGgVTegDaBZHQJI9jvUjLSx1fZQoaAZoCWgPQwjwUX+9QtBvQJSGlFKUaBVN5wFoFkdAklpja9K28nV9lChoBmgJaA9DCAq5Us8CyWFAlIaUUpRoFU3oA2gWR0CSYYbZezD5dX2UKGgGaAloD0MIXaj8a3mlZECUhpRSlGgVTegDaBZHQJJiLE/B3zN1fZQoaAZoCWgPQwjXpUboZxdgQJSGlFKUaBVN6ANoFkdAkmndwBHTZ3V9lChoBmgJaA9DCFad1QL7AGZAlIaUUpRoFU3oA2gWR0CSbUldTo+wdX2UKGgGaAloD0MI19081aHEYUCUhpRSlGgVTegDaBZHQJJv+GXXyy51fZQoaAZoCWgPQwihvfp46L1iQJSGlFKUaBVN6ANoFkdAknYRaX8fm3V9lChoBmgJaA9DCM+EJomla2FAlIaUUpRoFU3oA2gWR0CSd6gx8D0UdX2UKGgGaAloD0MIWyIXnEEeaECUhpRSlGgVTegDaBZHQJJ4Vv/BFd91fZQoaAZoCWgPQwjfGAKAY45kQJSGlFKUaBVN6ANoFkdAknnsi4axYHV9lChoBmgJaA9DCDFCeLTxTGdAlIaUUpRoFU3oA2gWR0CSffwkgOjJdX2UKGgGaAloD0MIJqsi3GTrY0CUhpRSlGgVTegDaBZHQJJ/CIGhVVB1fZQoaAZoCWgPQwjdsdgmlQNjQJSGlFKUaBVN6ANoFkdAkoLLPyCnP3V9lChoBmgJaA9DCHQHsTOF019AlIaUUpRoFU3oA2gWR0CSg/foRqXXdX2UKGgGaAloD0MIZoS3B6FWY0CUhpRSlGgVTegDaBZHQJKF5v/BFd91fZQoaAZoCWgPQwi/1qVG6CFfQJSGlFKUaBVN6ANoFkdAkoz/oV2zOXV9lChoBmgJaA9DCCf6fJQR6WVAlIaUUpRoFU3oA2gWR0CSqTKeTV2BdX2UKGgGaAloD0MIv0NRoE/eYECUhpRSlGgVTegDaBZHQJKvQVKwpvx1fZQoaAZoCWgPQwglOzYCcYlgQJSGlFKUaBVN6ANoFkdAkq/J/smfG3V9lChoBmgJaA9DCLk5lQzAAXNAlIaUUpRoFU3jAWgWR0CSs1WIXTEzdX2UKGgGaAloD0MIIlFoWXdIZkCUhpRSlGgVTegDaBZHQJK2N9Vmz0J1fZQoaAZoCWgPQwit+lxtxchlQJSGlFKUaBVN6ANoFkdAkrjV/Ue+23V9lChoBmgJaA9DCKg0YmYfFWJAlIaUUpRoFU3oA2gWR0CSuxKekHlfdX2UKGgGaAloD0MIADlhwuifZ0CUhpRSlGgVTegDaBZHQJLAV2ll9Sd1fZQoaAZoCWgPQwiB6EmZ1JpjQJSGlFKUaBVN6ANoFkdAksHRWxQizXV9lChoBmgJaA9DCDDVzFqKrGFAlIaUUpRoFU3oA2gWR0CSwoEBsANodX2UKGgGaAloD0MIOrLyy2DAYUCUhpRSlGgVTegDaBZHQJLEA2fkFOh1fZQoaAZoCWgPQwhDWI0lLLVlQJSGlFKUaBVN6ANoFkdAksfZI1+AmXV9lChoBmgJaA9DCDl7Z7RVtGRAlIaUUpRoFU3oA2gWR0CSyLemelKsdX2UKGgGaAloD0MIejnsvuNSZ0CUhpRSlGgVTegDaBZHQJLMLfXPJJZ1fZQoaAZoCWgPQwgBpDZxci5nQJSGlFKUaBVN6ANoFkdAks8dipeeF3V9lChoBmgJaA9DCMreUs4XVG1AlIaUUpRoFU07AWgWR0CS02QsPJ7tdX2UKGgGaAloD0MIZaVJKai/cECUhpRSlGgVTckDaBZHQJLT/enAIpp1fZQoaAZoCWgPQwiGdePdUXxxQJSGlFKUaBVNIgNoFkdAktwXVbzK93V9lChoBmgJaA9DCIwwRbk0FWhAlIaUUpRoFU3oA2gWR0CS3WkeZG8VdX2UKGgGaAloD0MIOdOE7ScYX0CUhpRSlGgVTegDaBZHQJL2C2G7Bft1fZQoaAZoCWgPQwj4HFiOEJJkQJSGlFKUaBVN6ANoFkdAkvaIcFQl8nV9lChoBmgJaA9DCC+KHvgYcGFAlIaUUpRoFU3oA2gWR0CS/RCTlkpadX2UKGgGaAloD0MI6nb2lYe9Y0CUhpRSlGgVTegDaBZHQJMAJ3cHnlp1fZQoaAZoCWgPQwiK6UKs/oRiQJSGlFKUaBVN6ANoFkdAkwLvKU3XI3V9lChoBmgJaA9DCDB/hcyVSmRAlIaUUpRoFU3oA2gWR0CTCT94/u9fdX2UKGgGaAloD0MIAaH18OWiYkCUhpRSlGgVTegDaBZHQJMLFYp2ECh1fZQoaAZoCWgPQwji6Crd3c5oQJSGlFKUaBVN6ANoFkdAkwvVZTyau3V9lChoBmgJaA9DCANgPIOGGkVAlIaUUpRoFUvhaBZHQJMOGATZg5R1fZQoaAZoCWgPQwhGJXUCGtpmQJSGlFKUaBVN6ANoFkdAkxI7mU4aP3V9lChoBmgJaA9DCHeE04IXg2JAlIaUUpRoFU3oA2gWR0CTE1dxhlUZdX2UKGgGaAloD0MI53EYzN+DYkCUhpRSlGgVTegDaBZHQJMXs+UyHmB1fZQoaAZoCWgPQwh0RSkh2CVhQJSGlFKUaBVN6ANoFkdAkxsSAH3UQXV9lChoBmgJaA9DCLN9yFuu+2NAlIaUUpRoFU3oA2gWR0CTH9ZJkGzKdX2UKGgGaAloD0MIuhCrP0IsZECUhpRSlGgVTegDaBZHQJMggFJQLux1fZQoaAZoCWgPQwiMg0vHnJ9gQJSGlFKUaBVN6ANoFkdAkyj42n8893V9lChoBmgJaA9DCAslk1M79GVAlIaUUpRoFU3oA2gWR0CTKkyjHn2adX2UKGgGaAloD0MIjNmSVRE/WECUhpRSlGgVS8hoFkdAkyu4Ny5qd3V9lChoBmgJaA9DCFOSdTi6s15AlIaUUpRoFU3oA2gWR0CTQrpnHvMKdX2UKGgGaAloD0MIYHXkSGfBZECUhpRSlGgVTegDaBZHQJNDPLSuyNZ1fZQoaAZoCWgPQwjmIOho1Q1hQJSGlFKUaBVN6ANoFkdAk0l07KaG6HV9lChoBmgJaA9DCIKsp1ZffGdAlIaUUpRoFU3oA2gWR0CTTtmlZX+3dX2UKGgGaAloD0MIQq8/iU+GZECUhpRSlGgVTegDaBZHQJNUsw0wait1fZQoaAZoCWgPQwjgoL36eGxnQJSGlFKUaBVN6ANoFkdAk1Y/q5byH3V9lChoBmgJaA9DCL6DnziAA2BAlIaUUpRoFU3oA2gWR0CTVvUkv9LpdX2UKGgGaAloD0MILgH4p9STZkCUhpRSlGgVTegDaBZHQJNZC6BiCrd1fZQoaAZoCWgPQwgqH4KqUblmQJSGlFKUaBVN6ANoFkdAk1zQLNOdoXV9lChoBmgJaA9DCGr5gas8pmVAlIaUUpRoFU3oA2gWR0CTXd3UhFEzdX2UKGgGaAloD0MI/kY7bvjgZUCUhpRSlGgVTegDaBZHQJNiCMm4RVZ1fZQoaAZoCWgPQwhSRlwAmu5hQJSGlFKUaBVN6ANoFkdAk2WWBreqJnV9lChoBmgJaA9DCI0KnGyDrGRAlIaUUpRoFU3oA2gWR0CTasDpTuOTdX2UKGgGaAloD0MIfAqA8QyaFcCUhpRSlGgVS91oFkdAk3OfLgXMyXV9lChoBmgJaA9DCMJNRpVhJWVAlIaUUpRoFU3oA2gWR0CTdWefqX4TdX2UKGgGaAloD0MIZFsGnKX3Y0CUhpRSlGgVTegDaBZHQJN2yz5XU6R1fZQoaAZoCWgPQwizJ4HNuZJjQJSGlFKUaBVN6ANoFkdAk3g+okzGgnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fec6b09534ff7db79e44ea225107e25b6b341c32edd61f938420839035dd4faa
3
+ size 147420
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ec6710af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ec6710b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ec6710c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ec6710ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8ec6710d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8ec6710dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ec6710e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ec6710ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8ec6710f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ec6712040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ec67120d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ec6712160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f8ec66feae0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673951155157310453,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM1Bb4Uc3A/oi0zvdIY4r7R8ti9C5bUPQAAAAAAAAAAzZKWvcHMFT+ly4I9FgC9vnKr3bvGAjW9AAAAAAAAAACa5B89FEqZuto8gDlqfYY0PIEOO5QFlLgAAIA/AACAPxrYej3smZW5gO7aOjzSRzX87py5P+YBugAAgD8AAIA/TXxUPVwbfrrdDSy61ccttWoFp7kyAkk5AACAPwAAgD8z/I68Kag+ulKfmbpOOay2INnjuvoKGzYAAIA/AACAP2bywrtcXwG64jnLO1+oXTh0gvM6IDO0twAAgD8AAIA/zRakvPaodbg2FJU6QjioNdk35roUerO5AACAPwAAgD9mYFk9e8qfukLq2rgw+QG0Rz+IOZMh+zcAAIA/AACAP40qN75AMY8/j7KhvpUQ5b4po3q+llgiPAAAAAAAAAAAM6OHvEi3pbr27Dq6N0kPNlGRIboSjFY5AACAPwAAgD+aN6Q9XD9CujaZqTnGxg61ka4AO15ABLQAAIA/AACAP2Z8tbxcb1q6nMGwuvVN3bUqCwy7IoPPOQAAgD8AAIA/IBtnPuYXIj8WxGG+GvWovouMPjwry3m9AAAAAAAAAABmQtS79pgiunI6G7ppNv21ipUPu5IpOTkAAIA/AACAPzP5nTwflfK5xou5OdmPhDaDdmg7Dm/auAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZYnOMotsY0CUhpRSlIwBbJRN6AOMAXSUR0CR0mPeYUnHdX2UKGgGaAloD0MIDp4JTRKSY0CUhpRSlGgVTegDaBZHQJHYFSxZ+x51fZQoaAZoCWgPQwhvSnmtBEhgQJSGlFKUaBVN6ANoFkdAkdmDrzGxU3V9lChoBmgJaA9DCJ54zhaQNmhAlIaUUpRoFU3oA2gWR0CR2ZSDh99ddX2UKGgGaAloD0MIoFOQn40vYkCUhpRSlGgVTegDaBZHQJHaNw4sEq51fZQoaAZoCWgPQwj/rs+cdb5jQJSGlFKUaBVN6ANoFkdAkduCThYNiHV9lChoBmgJaA9DCN18I7pn119AlIaUUpRoFU3oA2gWR0CR3CRjz7MxdX2UKGgGaAloD0MIh+C4jJvYZUCUhpRSlGgVTegDaBZHQJHe5og3cYZ1fZQoaAZoCWgPQwj2e2KdKnJoQJSGlFKUaBVN6ANoFkdAkd+3vUjLS3V9lChoBmgJaA9DCDgteNFXOGRAlIaUUpRoFU3oA2gWR0CR4s9nK4hEdX2UKGgGaAloD0MIuU+OAsTgZECUhpRSlGgVTegDaBZHQJHjNRYRuj11fZQoaAZoCWgPQwjJk6RrpppgQJSGlFKUaBVN6ANoFkdAkeYtOmBOHnV9lChoBmgJaA9DCLznwHKExERAlIaUUpRoFUvDaBZHQJHtSr7wazh1fZQoaAZoCWgPQwhHVRNEXSNnQJSGlFKUaBVN6ANoFkdAkhEcMiKR+3V9lChoBmgJaA9DCB/zAYHOyGRAlIaUUpRoFU3oA2gWR0CSEcUVSGahdX2UKGgGaAloD0MIs9DOaRZMYECUhpRSlGgVTegDaBZHQJIZX+98JD51fZQoaAZoCWgPQwh+4CpPoG9iQJSGlFKUaBVN6ANoFkdAkhxpGKAJ9nV9lChoBmgJaA9DCDnQQ20b/GVAlIaUUpRoFU3oA2gWR0CSHvqVyFPBdX2UKGgGaAloD0MITTJyFnYSY0CUhpRSlGgVTegDaBZHQJIlDEk0Jnh1fZQoaAZoCWgPQwjJ6IAk7C1kQJSGlFKUaBVN6ANoFkdAkibBsEaESXV9lChoBmgJaA9DCFQ3F3/bTmNAlIaUUpRoFU3oA2gWR0CSJtSZSeiBdX2UKGgGaAloD0MIaFn3j4VIZECUhpRSlGgVTegDaBZHQJInhwo9cKR1fZQoaAZoCWgPQwjjbaXX5lZkQJSGlFKUaBVN6ANoFkdAkikeyJKraXV9lChoBmgJaA9DCI7LuKkB2mJAlIaUUpRoFU3oA2gWR0CSKedE9dNWdX2UKGgGaAloD0MIXqCkwAJYZECUhpRSlGgVTegDaBZHQJItVXQtz0Z1fZQoaAZoCWgPQwg+7IUCNj1lQJSGlFKUaBVN6ANoFkdAki5ZQUHpr3V9lChoBmgJaA9DCL3jFB3JZl5AlIaUUpRoFU3oA2gWR0CSMppZOi35dX2UKGgGaAloD0MIxeQNMPOYVkCUhpRSlGgVS+5oFkdAkjPRHPNVznV9lChoBmgJaA9DCFDIzttYvWVAlIaUUpRoFU3oA2gWR0CSNeBfKISEdX2UKGgGaAloD0MIoWez6vPwY0CUhpRSlGgVTegDaBZHQJI9jvUjLSx1fZQoaAZoCWgPQwjwUX+9QtBvQJSGlFKUaBVN5wFoFkdAklpja9K28nV9lChoBmgJaA9DCAq5Us8CyWFAlIaUUpRoFU3oA2gWR0CSYYbZezD5dX2UKGgGaAloD0MIXaj8a3mlZECUhpRSlGgVTegDaBZHQJJiLE/B3zN1fZQoaAZoCWgPQwjXpUboZxdgQJSGlFKUaBVN6ANoFkdAkmndwBHTZ3V9lChoBmgJaA9DCFad1QL7AGZAlIaUUpRoFU3oA2gWR0CSbUldTo+wdX2UKGgGaAloD0MI19081aHEYUCUhpRSlGgVTegDaBZHQJJv+GXXyy51fZQoaAZoCWgPQwihvfp46L1iQJSGlFKUaBVN6ANoFkdAknYRaX8fm3V9lChoBmgJaA9DCM+EJomla2FAlIaUUpRoFU3oA2gWR0CSd6gx8D0UdX2UKGgGaAloD0MIWyIXnEEeaECUhpRSlGgVTegDaBZHQJJ4Vv/BFd91fZQoaAZoCWgPQwjfGAKAY45kQJSGlFKUaBVN6ANoFkdAknnsi4axYHV9lChoBmgJaA9DCDFCeLTxTGdAlIaUUpRoFU3oA2gWR0CSffwkgOjJdX2UKGgGaAloD0MIJqsi3GTrY0CUhpRSlGgVTegDaBZHQJJ/CIGhVVB1fZQoaAZoCWgPQwjdsdgmlQNjQJSGlFKUaBVN6ANoFkdAkoLLPyCnP3V9lChoBmgJaA9DCHQHsTOF019AlIaUUpRoFU3oA2gWR0CSg/foRqXXdX2UKGgGaAloD0MIZoS3B6FWY0CUhpRSlGgVTegDaBZHQJKF5v/BFd91fZQoaAZoCWgPQwi/1qVG6CFfQJSGlFKUaBVN6ANoFkdAkoz/oV2zOXV9lChoBmgJaA9DCCf6fJQR6WVAlIaUUpRoFU3oA2gWR0CSqTKeTV2BdX2UKGgGaAloD0MIv0NRoE/eYECUhpRSlGgVTegDaBZHQJKvQVKwpvx1fZQoaAZoCWgPQwglOzYCcYlgQJSGlFKUaBVN6ANoFkdAkq/J/smfG3V9lChoBmgJaA9DCLk5lQzAAXNAlIaUUpRoFU3jAWgWR0CSs1WIXTEzdX2UKGgGaAloD0MIIlFoWXdIZkCUhpRSlGgVTegDaBZHQJK2N9Vmz0J1fZQoaAZoCWgPQwit+lxtxchlQJSGlFKUaBVN6ANoFkdAkrjV/Ue+23V9lChoBmgJaA9DCKg0YmYfFWJAlIaUUpRoFU3oA2gWR0CSuxKekHlfdX2UKGgGaAloD0MIADlhwuifZ0CUhpRSlGgVTegDaBZHQJLAV2ll9Sd1fZQoaAZoCWgPQwiB6EmZ1JpjQJSGlFKUaBVN6ANoFkdAksHRWxQizXV9lChoBmgJaA9DCDDVzFqKrGFAlIaUUpRoFU3oA2gWR0CSwoEBsANodX2UKGgGaAloD0MIOrLyy2DAYUCUhpRSlGgVTegDaBZHQJLEA2fkFOh1fZQoaAZoCWgPQwhDWI0lLLVlQJSGlFKUaBVN6ANoFkdAksfZI1+AmXV9lChoBmgJaA9DCDl7Z7RVtGRAlIaUUpRoFU3oA2gWR0CSyLemelKsdX2UKGgGaAloD0MIejnsvuNSZ0CUhpRSlGgVTegDaBZHQJLMLfXPJJZ1fZQoaAZoCWgPQwgBpDZxci5nQJSGlFKUaBVN6ANoFkdAks8dipeeF3V9lChoBmgJaA9DCMreUs4XVG1AlIaUUpRoFU07AWgWR0CS02QsPJ7tdX2UKGgGaAloD0MIZaVJKai/cECUhpRSlGgVTckDaBZHQJLT/enAIpp1fZQoaAZoCWgPQwiGdePdUXxxQJSGlFKUaBVNIgNoFkdAktwXVbzK93V9lChoBmgJaA9DCIwwRbk0FWhAlIaUUpRoFU3oA2gWR0CS3WkeZG8VdX2UKGgGaAloD0MIOdOE7ScYX0CUhpRSlGgVTegDaBZHQJL2C2G7Bft1fZQoaAZoCWgPQwj4HFiOEJJkQJSGlFKUaBVN6ANoFkdAkvaIcFQl8nV9lChoBmgJaA9DCC+KHvgYcGFAlIaUUpRoFU3oA2gWR0CS/RCTlkpadX2UKGgGaAloD0MI6nb2lYe9Y0CUhpRSlGgVTegDaBZHQJMAJ3cHnlp1fZQoaAZoCWgPQwiK6UKs/oRiQJSGlFKUaBVN6ANoFkdAkwLvKU3XI3V9lChoBmgJaA9DCDB/hcyVSmRAlIaUUpRoFU3oA2gWR0CTCT94/u9fdX2UKGgGaAloD0MIAaH18OWiYkCUhpRSlGgVTegDaBZHQJMLFYp2ECh1fZQoaAZoCWgPQwji6Crd3c5oQJSGlFKUaBVN6ANoFkdAkwvVZTyau3V9lChoBmgJaA9DCANgPIOGGkVAlIaUUpRoFUvhaBZHQJMOGATZg5R1fZQoaAZoCWgPQwhGJXUCGtpmQJSGlFKUaBVN6ANoFkdAkxI7mU4aP3V9lChoBmgJaA9DCHeE04IXg2JAlIaUUpRoFU3oA2gWR0CTE1dxhlUZdX2UKGgGaAloD0MI53EYzN+DYkCUhpRSlGgVTegDaBZHQJMXs+UyHmB1fZQoaAZoCWgPQwh0RSkh2CVhQJSGlFKUaBVN6ANoFkdAkxsSAH3UQXV9lChoBmgJaA9DCLN9yFuu+2NAlIaUUpRoFU3oA2gWR0CTH9ZJkGzKdX2UKGgGaAloD0MIuhCrP0IsZECUhpRSlGgVTegDaBZHQJMggFJQLux1fZQoaAZoCWgPQwiMg0vHnJ9gQJSGlFKUaBVN6ANoFkdAkyj42n8893V9lChoBmgJaA9DCAslk1M79GVAlIaUUpRoFU3oA2gWR0CTKkyjHn2adX2UKGgGaAloD0MIjNmSVRE/WECUhpRSlGgVS8hoFkdAkyu4Ny5qd3V9lChoBmgJaA9DCFOSdTi6s15AlIaUUpRoFU3oA2gWR0CTQrpnHvMKdX2UKGgGaAloD0MIYHXkSGfBZECUhpRSlGgVTegDaBZHQJNDPLSuyNZ1fZQoaAZoCWgPQwjmIOho1Q1hQJSGlFKUaBVN6ANoFkdAk0l07KaG6HV9lChoBmgJaA9DCIKsp1ZffGdAlIaUUpRoFU3oA2gWR0CTTtmlZX+3dX2UKGgGaAloD0MIQq8/iU+GZECUhpRSlGgVTegDaBZHQJNUsw0wait1fZQoaAZoCWgPQwjgoL36eGxnQJSGlFKUaBVN6ANoFkdAk1Y/q5byH3V9lChoBmgJaA9DCL6DnziAA2BAlIaUUpRoFU3oA2gWR0CTVvUkv9LpdX2UKGgGaAloD0MILgH4p9STZkCUhpRSlGgVTegDaBZHQJNZC6BiCrd1fZQoaAZoCWgPQwgqH4KqUblmQJSGlFKUaBVN6ANoFkdAk1zQLNOdoXV9lChoBmgJaA9DCGr5gas8pmVAlIaUUpRoFU3oA2gWR0CTXd3UhFEzdX2UKGgGaAloD0MI/kY7bvjgZUCUhpRSlGgVTegDaBZHQJNiCMm4RVZ1fZQoaAZoCWgPQwhSRlwAmu5hQJSGlFKUaBVN6ANoFkdAk2WWBreqJnV9lChoBmgJaA9DCI0KnGyDrGRAlIaUUpRoFU3oA2gWR0CTasDpTuOTdX2UKGgGaAloD0MIfAqA8QyaFcCUhpRSlGgVS91oFkdAk3OfLgXMyXV9lChoBmgJaA9DCMJNRpVhJWVAlIaUUpRoFU3oA2gWR0CTdWefqX4TdX2UKGgGaAloD0MIZFsGnKX3Y0CUhpRSlGgVTegDaBZHQJN2yz5XU6R1fZQoaAZoCWgPQwizJ4HNuZJjQJSGlFKUaBVN6ANoFkdAk3g+okzGgnVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a55e32b4e8e3f6d59c829827e036532b78dd1359962ee546c4a24347e4ad21c0
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c65fb91ef4beb838a93e5ce90d26be7eecd4de687b98b64845faa0a17abe916
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (191 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.8542471175348, "std_reward": 25.05728771448499, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T10:45:16.203587"}