First commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 285.73 +/- 12.71
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19c419f680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19c419f710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19c419f7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19c419f830>", "_build": "<function ActorCriticPolicy._build at 0x7f19c419f8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f19c419f950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19c419f9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f19c419fa70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19c419fb00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19c419fb90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19c419fc20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f19c41ee600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652180073.0694616, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObUJD6zwI8/PjwJPzM8Db84HJs+dgXzPgAAAAAAAAAA2vg7vtALiD/q292+eukhvyAWyL6sEpS+AAAAAAAAAAAzCcg86S5/vMSlxD0F8d87CKqdvZ0dh74AAIA/AACAPzOOkDzDNXK6Xb8qNURYPDCjbDY7xX5WtAAAgD8AAIA/mhESPc/cFLxbCLW9J1WiPErdbz1oaoa9AACAPwAAgD/gJoc+/04fP8DO9bwAiEO/36D3PiUVT74AAAAAAAAAADMxaDx7tpu6UlaNtJ7SErDTAp25CpeCMwAAgD8AAIA/ZsIhPnzpSz67ctq+Z/4hv62CDzu245K+AAAAAAAAAAAaNHg+yTWQP7OGtj4tcSK/r6AFP9a5cj4AAAAAAAAAAI1eCz5IaNE9NSrqvrxlz762yLK9AoJrvgAAAAAAAAAAmjFGPPZcbboAZzwzww+qr6luC7nKKcqzAACAPwAAgD+aCYi8w89ovJbA6ztsR7E8gRvRPRZLjr0AAIA/AACAPzNdsrx7XpO6SLbrupUe5LVEilO54WIIOgAAgD8AAIA/hhxMvghD0j4TMdk+zvw+v2Ic/r0FlYg+AAAAAAAAAAAAIDS7pPkIuyryK70BWsU8I34DPO6UqL0AAIA/AACAPyYmzz0ojA4/rentvWEkUL8bGi8+2iYMvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZY9QMyRSc0CUhpRSlIwBbJRLq4wBdJRHQMMh4kWZZ0V1fZQoaAZoCWgPQwgi/mFLD8RxQJSGlFKUaBVLrmgWR0DDIe19roGIdX2UKGgGaAloD0MIJJwWvOgXcUCUhpRSlGgVS6doFkdAwyH71nuiOHV9lChoBmgJaA9DCFjmrbpOi3NAlIaUUpRoFUu8aBZHQMMiBFTm4iJ1fZQoaAZoCWgPQwgbu0T11ilzQJSGlFKUaBVLwGgWR0DDIgPyiEg4dX2UKGgGaAloD0MIH6FmSBVtckCUhpRSlGgVS7NoFkdAwyIGophF3XV9lChoBmgJaA9DCHjuPVwyW3JAlIaUUpRoFUu4aBZHQMMiClQEZBN1fZQoaAZoCWgPQwiZucDlMfxyQJSGlFKUaBVLu2gWR0DDIg1Ey+HrdX2UKGgGaAloD0MItCCU9/Fxc0CUhpRSlGgVS7VoFkdAwyIZwb2lEnV9lChoBmgJaA9DCPjFpSot53NAlIaUUpRoFU2gAWgWR0DDIhur2g3+dX2UKGgGaAloD0MI71aW6Oz/cUCUhpRSlGgVS5doFkdAwyx13VTaTXV9lChoBmgJaA9DCOyGbYuyb3FAlIaUUpRoFUugaBZHQMMskA5zYEp1fZQoaAZoCWgPQwjDYtS19hx0QJSGlFKUaBVLtWgWR0DDLJSlN1yOdX2UKGgGaAloD0MIfT81Xjo1dECUhpRSlGgVS9doFkdAwyyo1SflIXV9lChoBmgJaA9DCKgBg6QPO3NAlIaUUpRoFUu/aBZHQMMsq5mZmZp1fZQoaAZoCWgPQwhcy2Q4HmVyQJSGlFKUaBVLxGgWR0DDLKqisXBQdX2UKGgGaAloD0MIQBU3bjGNckCUhpRSlGgVS5JoFkdAwyzcLsrupnV9lChoBmgJaA9DCBhcc0f/SHJAlIaUUpRoFUu9aBZHQMMs3G5lOGl1fZQoaAZoCWgPQwiBk23gTmtxQJSGlFKUaBVLnWgWR0DDLOBl4C6pdX2UKGgGaAloD0MI9tIUAc65cUCUhpRSlGgVS7xoFkdAwyzl7el9B3V9lChoBmgJaA9DCILK+PfZxnFAlIaUUpRoFUuYaBZHQMMs8cX3xnZ1fZQoaAZoCWgPQwgC9Pv+DWNyQJSGlFKUaBVLq2gWR0DDLPTLOiWWdX2UKGgGaAloD0MIH7+36U8PdECUhpRSlGgVS7RoFkdAwyz2Jyhi9nV9lChoBmgJaA9DCHbj3ZExyHNAlIaUUpRoFUvGaBZHQMMs+0+LWI51fZQoaAZoCWgPQwhX6lkQCoxzQJSGlFKUaBVLwWgWR0DDLP2Ur08OdX2UKGgGaAloD0MICJPi4xPwcUCUhpRSlGgVS4RoFkdAwyz/ovi97HV9lChoBmgJaA9DCCyAKQNHZ3NAlIaUUpRoFUvCaBZHQMMtEkdmxt51fZQoaAZoCWgPQwgGnnsP1x1yQJSGlFKUaBVL1WgWR0DDLSL6DXe4dX2UKGgGaAloD0MIz7wcdh+ZcUCUhpRSlGgVS65oFkdAwy041VHWjHV9lChoBmgJaA9DCChDVUwlv3FAlIaUUpRoFUu0aBZHQMMtPEcsDnx1fZQoaAZoCWgPQwind/F+XFVxQJSGlFKUaBVLxGgWR0DDLUzC+De1dX2UKGgGaAloD0MIwCDp02qfckCUhpRSlGgVS41oFkdAwy1OcCo0h3V9lChoBmgJaA9DCI5XIHpSjEFAlIaUUpRoFUtmaBZHQMMtUY6fapR1fZQoaAZoCWgPQwiXVkPiHt9yQJSGlFKUaBVL52gWR0DDLVOIhyKfdX2UKGgGaAloD0MIXOSerq7VcUCUhpRSlGgVS5JoFkdAwy1pfLLZBnV9lChoBmgJaA9DCFqg3SHFO3NAlIaUUpRoFUuwaBZHQMMtbjmCAc11fZQoaAZoCWgPQwgaGk8EcfdvQJSGlFKUaBVLn2gWR0DDLXSdFvycdX2UKGgGaAloD0MIBd80fbbvcECUhpRSlGgVS69oFkdAwy1zriVB2XV9lChoBmgJaA9DCJeQD3o2M3JAlIaUUpRoFUu1aBZHQMMtgpfhMrV1fZQoaAZoCWgPQwiV1Alo4jV0QJSGlFKUaBVL3GgWR0DDLY6tNi6QdX2UKGgGaAloD0MILSRgdHlwckCUhpRSlGgVS7toFkdAwy2Ru8brC3V9lChoBmgJaA9DCEHWU6vvo3FAlIaUUpRoFUu2aBZHQMMtkFq8Djl1fZQoaAZoCWgPQwgxthDkIDByQJSGlFKUaBVLmGgWR0DDLaEEzO5bdX2UKGgGaAloD0MIrRiuDoBGSkCUhpRSlGgVS3NoFkdAwy2xytmthnV9lChoBmgJaA9DCAg8MIDw5HJAlIaUUpRoFUvGaBZHQMMttZnUUfx1fZQoaAZoCWgPQwj0UNuGUe5wQJSGlFKUaBVLoWgWR0DDLcDnaFmGdX2UKGgGaAloD0MIYcWp1sKUcECUhpRSlGgVS6doFkdAwy3CicG1QnV9lChoBmgJaA9DCOvE5XjFH3JAlIaUUpRoFUuVaBZHQMMtx/gaWHF1fZQoaAZoCWgPQwg2BTI7CxRxQJSGlFKUaBVLrGgWR0DDLd6zZ6D5dX2UKGgGaAloD0MI3q8CfDejc0CUhpRSlGgVS7hoFkdAwy3kHFglW3V9lChoBmgJaA9DCG6/fLLimnNAlIaUUpRoFUu8aBZHQMMuDbMHKOl1fZQoaAZoCWgPQwjb3JieMDVyQJSGlFKUaBVLu2gWR0DDLhHdXT3JdX2UKGgGaAloD0MIiWGHMWnDc0CUhpRSlGgVS8BoFkdAwy4XHe7+UHV9lChoBmgJaA9DCMXjolrEcnJAlIaUUpRoFUuzaBZHQMMuG6X0Gu91fZQoaAZoCWgPQwjaU3JO7BVyQJSGlFKUaBVLp2gWR0DDLh94qwyJdX2UKGgGaAloD0MI1EZ1OhBLckCUhpRSlGgVS5VoFkdAwy4hk078vXV9lChoBmgJaA9DCMy209YIfXJAlIaUUpRoFUuvaBZHQMMuJMZ5zHV1fZQoaAZoCWgPQwgcCwqD8odxQJSGlFKUaBVLh2gWR0DDLiqpzcREdX2UKGgGaAloD0MIokRLHg9nckCUhpRSlGgVS4doFkdAwy42s4ku6HV9lChoBmgJaA9DCJ7RViXRTHRAlIaUUpRoFUvBaBZHQMMuN1hb4ah1fZQoaAZoCWgPQwjhmjv63+pyQJSGlFKUaBVLmmgWR0DDLjcKG+K1dX2UKGgGaAloD0MIUDi7tUw9dECUhpRSlGgVTQUBaBZHQMMuSBF/hEV1fZQoaAZoCWgPQwj1K50PDzhyQJSGlFKUaBVLpmgWR0DDLlcIPbwjdX2UKGgGaAloD0MIyVUsftOpc0CUhpRSlGgVS7VoFkdAwy5di1Aqu3V9lChoBmgJaA9DCECKOnNPW3FAlIaUUpRoFUusaBZHQMMuc5vDP4V1fZQoaAZoCWgPQwh4YADhA7hxQJSGlFKUaBVLsmgWR0DDLn4mZ3LWdX2UKGgGaAloD0MIv0aSINxcc0CUhpRSlGgVS6BoFkdAwy6VyhBZ6nV9lChoBmgJaA9DCNRfr7AgwnBAlIaUUpRoFUuraBZHQMMuqFAE+xJ1fZQoaAZoCWgPQwi/f/PihAByQJSGlFKUaBVLo2gWR0DDLq0RUWEcdX2UKGgGaAloD0MI3q8CfLegc0CUhpRSlGgVS8FoFkdAwy64VO9FnnV9lChoBmgJaA9DCKCM8WG2i3NAlIaUUpRoFUuyaBZHQMMuuVQZXMh1fZQoaAZoCWgPQwgKoYMuIVVyQJSGlFKUaBVLtGgWR0DDLsWPzWf9dX2UKGgGaAloD0MIXAUx0PUtckCUhpRSlGgVS79oFkdAwy7JLuhK2HV9lChoBmgJaA9DCDW4rS28MXRAlIaUUpRoFUuuaBZHQMMuzPz4DcN1fZQoaAZoCWgPQwj8x0J0iOZxQJSGlFKUaBVL3WgWR0DDLtmpAD7qdX2UKGgGaAloD0MIVMN+T2zbckCUhpRSlGgVS61oFkdAwy7ddAPd23V9lChoBmgJaA9DCHGsi9to6HNAlIaUUpRoFUvQaBZHQMMu6XMQmNR1fZQoaAZoCWgPQwhlUkMbACBzQJSGlFKUaBVL2GgWR0DDLu+Ef1YhdX2UKGgGaAloD0MIB5rPuVtIcUCUhpRSlGgVS7BoFkdAwy7vedCmdnV9lChoBmgJaA9DCLvSMlJvWnRAlIaUUpRoFUuuaBZHQMMu9QM6RyR1fZQoaAZoCWgPQwigbqDAezhxQJSGlFKUaBVLqWgWR0DDLwTwc5sCdX2UKGgGaAloD0MIZysv+R+5c0CUhpRSlGgVS8VoFkdAwy8mZ4wAVHV9lChoBmgJaA9DCJOmQdF8BnFAlIaUUpRoFUuraBZHQMMvJ5pi7TV1fZQoaAZoCWgPQwghWcAE7lBzQJSGlFKUaBVLomgWR0DDLzIkZ75VdX2UKGgGaAloD0MIngyOkpfCcECUhpRSlGgVS51oFkdAwy88ONHYpXV9lChoBmgJaA9DCL9FJ0stjXFAlIaUUpRoFUuraBZHQMMvSR95Qgt1fZQoaAZoCWgPQwjDf7qBAgNvQJSGlFKUaBVLpGgWR0DDL0+VJL/TdX2UKGgGaAloD0MIW+z2WeXtckCUhpRSlGgVS8JoFkdAwy9RoysS03V9lChoBmgJaA9DCBxhURHnd3NAlIaUUpRoFUunaBZHQMMvVZuIhyN1fZQoaAZoCWgPQwiWmGclLXlxQJSGlFKUaBVLpWgWR0DDL2aDIzWPdX2UKGgGaAloD0MIcm4T7hUbc0CUhpRSlGgVS6toFkdAwy9nybx3FHV9lChoBmgJaA9DCFFqL6Jt7nNAlIaUUpRoFUvDaBZHQMMvbnZ00WN1fZQoaAZoCWgPQwgRUrezLzdyQJSGlFKUaBVLpGgWR0DDL3FB8hLXdX2UKGgGaAloD0MIz4WRXpRzc0CUhpRSlGgVS6JoFkdAwy91N1QqJHV9lChoBmgJaA9DCOWzPA9uFnNAlIaUUpRoFUusaBZHQMMvfUwaisZ1fZQoaAZoCWgPQwi77q1IzBlwQJSGlFKUaBVLqGgWR0DDL41JcxCZdX2UKGgGaAloD0MIc2cmGE51cUCUhpRSlGgVS8JoFkdAwy+SBJ7LMnV9lChoBmgJaA9DCFyPwvVoKnNAlIaUUpRoFUuaaBZHQMMvossH0K91fZQoaAZoCWgPQwjfwyXHXb5wQJSGlFKUaBVLnWgWR0DDL69YyO7ydX2UKGgGaAloD0MI9WVppyZtcUCUhpRSlGgVS7JoFkdAwy+1HbRF7XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3070, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc642cba45e845f85a7e7139c4c7c708ad1bfcfdf28685073ccd65e9623c3cbe
|
3 |
+
size 143988
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f19c419f680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19c419f710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19c419f7a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19c419f830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f19c419f8c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f19c419f950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19c419f9e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f19c419fa70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19c419fb00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19c419fb90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19c419fc20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f19c41ee600>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 3014656,
|
46 |
+
"_total_timesteps": 3000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652180073.0694616,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObUJD6zwI8/PjwJPzM8Db84HJs+dgXzPgAAAAAAAAAA2vg7vtALiD/q292+eukhvyAWyL6sEpS+AAAAAAAAAAAzCcg86S5/vMSlxD0F8d87CKqdvZ0dh74AAIA/AACAPzOOkDzDNXK6Xb8qNURYPDCjbDY7xX5WtAAAgD8AAIA/mhESPc/cFLxbCLW9J1WiPErdbz1oaoa9AACAPwAAgD/gJoc+/04fP8DO9bwAiEO/36D3PiUVT74AAAAAAAAAADMxaDx7tpu6UlaNtJ7SErDTAp25CpeCMwAAgD8AAIA/ZsIhPnzpSz67ctq+Z/4hv62CDzu245K+AAAAAAAAAAAaNHg+yTWQP7OGtj4tcSK/r6AFP9a5cj4AAAAAAAAAAI1eCz5IaNE9NSrqvrxlz762yLK9AoJrvgAAAAAAAAAAmjFGPPZcbboAZzwzww+qr6luC7nKKcqzAACAPwAAgD+aCYi8w89ovJbA6ztsR7E8gRvRPRZLjr0AAIA/AACAPzNdsrx7XpO6SLbrupUe5LVEilO54WIIOgAAgD8AAIA/hhxMvghD0j4TMdk+zvw+v2Ic/r0FlYg+AAAAAAAAAAAAIDS7pPkIuyryK70BWsU8I34DPO6UqL0AAIA/AACAPyYmzz0ojA4/rentvWEkUL8bGi8+2iYMvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZY9QMyRSc0CUhpRSlIwBbJRLq4wBdJRHQMMh4kWZZ0V1fZQoaAZoCWgPQwgi/mFLD8RxQJSGlFKUaBVLrmgWR0DDIe19roGIdX2UKGgGaAloD0MIJJwWvOgXcUCUhpRSlGgVS6doFkdAwyH71nuiOHV9lChoBmgJaA9DCFjmrbpOi3NAlIaUUpRoFUu8aBZHQMMiBFTm4iJ1fZQoaAZoCWgPQwgbu0T11ilzQJSGlFKUaBVLwGgWR0DDIgPyiEg4dX2UKGgGaAloD0MIH6FmSBVtckCUhpRSlGgVS7NoFkdAwyIGophF3XV9lChoBmgJaA9DCHjuPVwyW3JAlIaUUpRoFUu4aBZHQMMiClQEZBN1fZQoaAZoCWgPQwiZucDlMfxyQJSGlFKUaBVLu2gWR0DDIg1Ey+HrdX2UKGgGaAloD0MItCCU9/Fxc0CUhpRSlGgVS7VoFkdAwyIZwb2lEnV9lChoBmgJaA9DCPjFpSot53NAlIaUUpRoFU2gAWgWR0DDIhur2g3+dX2UKGgGaAloD0MI71aW6Oz/cUCUhpRSlGgVS5doFkdAwyx13VTaTXV9lChoBmgJaA9DCOyGbYuyb3FAlIaUUpRoFUugaBZHQMMskA5zYEp1fZQoaAZoCWgPQwjDYtS19hx0QJSGlFKUaBVLtWgWR0DDLJSlN1yOdX2UKGgGaAloD0MIfT81Xjo1dECUhpRSlGgVS9doFkdAwyyo1SflIXV9lChoBmgJaA9DCKgBg6QPO3NAlIaUUpRoFUu/aBZHQMMsq5mZmZp1fZQoaAZoCWgPQwhcy2Q4HmVyQJSGlFKUaBVLxGgWR0DDLKqisXBQdX2UKGgGaAloD0MIQBU3bjGNckCUhpRSlGgVS5JoFkdAwyzcLsrupnV9lChoBmgJaA9DCBhcc0f/SHJAlIaUUpRoFUu9aBZHQMMs3G5lOGl1fZQoaAZoCWgPQwiBk23gTmtxQJSGlFKUaBVLnWgWR0DDLOBl4C6pdX2UKGgGaAloD0MI9tIUAc65cUCUhpRSlGgVS7xoFkdAwyzl7el9B3V9lChoBmgJaA9DCILK+PfZxnFAlIaUUpRoFUuYaBZHQMMs8cX3xnZ1fZQoaAZoCWgPQwgC9Pv+DWNyQJSGlFKUaBVLq2gWR0DDLPTLOiWWdX2UKGgGaAloD0MIH7+36U8PdECUhpRSlGgVS7RoFkdAwyz2Jyhi9nV9lChoBmgJaA9DCHbj3ZExyHNAlIaUUpRoFUvGaBZHQMMs+0+LWI51fZQoaAZoCWgPQwhX6lkQCoxzQJSGlFKUaBVLwWgWR0DDLP2Ur08OdX2UKGgGaAloD0MICJPi4xPwcUCUhpRSlGgVS4RoFkdAwyz/ovi97HV9lChoBmgJaA9DCCyAKQNHZ3NAlIaUUpRoFUvCaBZHQMMtEkdmxt51fZQoaAZoCWgPQwgGnnsP1x1yQJSGlFKUaBVL1WgWR0DDLSL6DXe4dX2UKGgGaAloD0MIz7wcdh+ZcUCUhpRSlGgVS65oFkdAwy041VHWjHV9lChoBmgJaA9DCChDVUwlv3FAlIaUUpRoFUu0aBZHQMMtPEcsDnx1fZQoaAZoCWgPQwind/F+XFVxQJSGlFKUaBVLxGgWR0DDLUzC+De1dX2UKGgGaAloD0MIwCDp02qfckCUhpRSlGgVS41oFkdAwy1OcCo0h3V9lChoBmgJaA9DCI5XIHpSjEFAlIaUUpRoFUtmaBZHQMMtUY6fapR1fZQoaAZoCWgPQwiXVkPiHt9yQJSGlFKUaBVL52gWR0DDLVOIhyKfdX2UKGgGaAloD0MIXOSerq7VcUCUhpRSlGgVS5JoFkdAwy1pfLLZBnV9lChoBmgJaA9DCFqg3SHFO3NAlIaUUpRoFUuwaBZHQMMtbjmCAc11fZQoaAZoCWgPQwgaGk8EcfdvQJSGlFKUaBVLn2gWR0DDLXSdFvycdX2UKGgGaAloD0MIBd80fbbvcECUhpRSlGgVS69oFkdAwy1zriVB2XV9lChoBmgJaA9DCJeQD3o2M3JAlIaUUpRoFUu1aBZHQMMtgpfhMrV1fZQoaAZoCWgPQwiV1Alo4jV0QJSGlFKUaBVL3GgWR0DDLY6tNi6QdX2UKGgGaAloD0MILSRgdHlwckCUhpRSlGgVS7toFkdAwy2Ru8brC3V9lChoBmgJaA9DCEHWU6vvo3FAlIaUUpRoFUu2aBZHQMMtkFq8Djl1fZQoaAZoCWgPQwgxthDkIDByQJSGlFKUaBVLmGgWR0DDLaEEzO5bdX2UKGgGaAloD0MIrRiuDoBGSkCUhpRSlGgVS3NoFkdAwy2xytmthnV9lChoBmgJaA9DCAg8MIDw5HJAlIaUUpRoFUvGaBZHQMMttZnUUfx1fZQoaAZoCWgPQwj0UNuGUe5wQJSGlFKUaBVLoWgWR0DDLcDnaFmGdX2UKGgGaAloD0MIYcWp1sKUcECUhpRSlGgVS6doFkdAwy3CicG1QnV9lChoBmgJaA9DCOvE5XjFH3JAlIaUUpRoFUuVaBZHQMMtx/gaWHF1fZQoaAZoCWgPQwg2BTI7CxRxQJSGlFKUaBVLrGgWR0DDLd6zZ6D5dX2UKGgGaAloD0MI3q8CfDejc0CUhpRSlGgVS7hoFkdAwy3kHFglW3V9lChoBmgJaA9DCG6/fLLimnNAlIaUUpRoFUu8aBZHQMMuDbMHKOl1fZQoaAZoCWgPQwjb3JieMDVyQJSGlFKUaBVLu2gWR0DDLhHdXT3JdX2UKGgGaAloD0MIiWGHMWnDc0CUhpRSlGgVS8BoFkdAwy4XHe7+UHV9lChoBmgJaA9DCMXjolrEcnJAlIaUUpRoFUuzaBZHQMMuG6X0Gu91fZQoaAZoCWgPQwjaU3JO7BVyQJSGlFKUaBVLp2gWR0DDLh94qwyJdX2UKGgGaAloD0MI1EZ1OhBLckCUhpRSlGgVS5VoFkdAwy4hk078vXV9lChoBmgJaA9DCMy209YIfXJAlIaUUpRoFUuvaBZHQMMuJMZ5zHV1fZQoaAZoCWgPQwgcCwqD8odxQJSGlFKUaBVLh2gWR0DDLiqpzcREdX2UKGgGaAloD0MIokRLHg9nckCUhpRSlGgVS4doFkdAwy42s4ku6HV9lChoBmgJaA9DCJ7RViXRTHRAlIaUUpRoFUvBaBZHQMMuN1hb4ah1fZQoaAZoCWgPQwjhmjv63+pyQJSGlFKUaBVLmmgWR0DDLjcKG+K1dX2UKGgGaAloD0MIUDi7tUw9dECUhpRSlGgVTQUBaBZHQMMuSBF/hEV1fZQoaAZoCWgPQwj1K50PDzhyQJSGlFKUaBVLpmgWR0DDLlcIPbwjdX2UKGgGaAloD0MIyVUsftOpc0CUhpRSlGgVS7VoFkdAwy5di1Aqu3V9lChoBmgJaA9DCECKOnNPW3FAlIaUUpRoFUusaBZHQMMuc5vDP4V1fZQoaAZoCWgPQwh4YADhA7hxQJSGlFKUaBVLsmgWR0DDLn4mZ3LWdX2UKGgGaAloD0MIv0aSINxcc0CUhpRSlGgVS6BoFkdAwy6VyhBZ6nV9lChoBmgJaA9DCNRfr7AgwnBAlIaUUpRoFUuraBZHQMMuqFAE+xJ1fZQoaAZoCWgPQwi/f/PihAByQJSGlFKUaBVLo2gWR0DDLq0RUWEcdX2UKGgGaAloD0MI3q8CfLegc0CUhpRSlGgVS8FoFkdAwy64VO9FnnV9lChoBmgJaA9DCKCM8WG2i3NAlIaUUpRoFUuyaBZHQMMuuVQZXMh1fZQoaAZoCWgPQwgKoYMuIVVyQJSGlFKUaBVLtGgWR0DDLsWPzWf9dX2UKGgGaAloD0MIXAUx0PUtckCUhpRSlGgVS79oFkdAwy7JLuhK2HV9lChoBmgJaA9DCDW4rS28MXRAlIaUUpRoFUuuaBZHQMMuzPz4DcN1fZQoaAZoCWgPQwj8x0J0iOZxQJSGlFKUaBVL3WgWR0DDLtmpAD7qdX2UKGgGaAloD0MIVMN+T2zbckCUhpRSlGgVS61oFkdAwy7ddAPd23V9lChoBmgJaA9DCHGsi9to6HNAlIaUUpRoFUvQaBZHQMMu6XMQmNR1fZQoaAZoCWgPQwhlUkMbACBzQJSGlFKUaBVL2GgWR0DDLu+Ef1YhdX2UKGgGaAloD0MIB5rPuVtIcUCUhpRSlGgVS7BoFkdAwy7vedCmdnV9lChoBmgJaA9DCLvSMlJvWnRAlIaUUpRoFUuuaBZHQMMu9QM6RyR1fZQoaAZoCWgPQwigbqDAezhxQJSGlFKUaBVLqWgWR0DDLwTwc5sCdX2UKGgGaAloD0MIZysv+R+5c0CUhpRSlGgVS8VoFkdAwy8mZ4wAVHV9lChoBmgJaA9DCJOmQdF8BnFAlIaUUpRoFUuraBZHQMMvJ5pi7TV1fZQoaAZoCWgPQwghWcAE7lBzQJSGlFKUaBVLomgWR0DDLzIkZ75VdX2UKGgGaAloD0MIngyOkpfCcECUhpRSlGgVS51oFkdAwy88ONHYpXV9lChoBmgJaA9DCL9FJ0stjXFAlIaUUpRoFUuraBZHQMMvSR95Qgt1fZQoaAZoCWgPQwjDf7qBAgNvQJSGlFKUaBVLpGgWR0DDL0+VJL/TdX2UKGgGaAloD0MIW+z2WeXtckCUhpRSlGgVS8JoFkdAwy9RoysS03V9lChoBmgJaA9DCBxhURHnd3NAlIaUUpRoFUunaBZHQMMvVZuIhyN1fZQoaAZoCWgPQwiWmGclLXlxQJSGlFKUaBVLpWgWR0DDL2aDIzWPdX2UKGgGaAloD0MIcm4T7hUbc0CUhpRSlGgVS6toFkdAwy9nybx3FHV9lChoBmgJaA9DCFFqL6Jt7nNAlIaUUpRoFUvDaBZHQMMvbnZ00WN1fZQoaAZoCWgPQwgRUrezLzdyQJSGlFKUaBVLpGgWR0DDL3FB8hLXdX2UKGgGaAloD0MIz4WRXpRzc0CUhpRSlGgVS6JoFkdAwy91N1QqJHV9lChoBmgJaA9DCOWzPA9uFnNAlIaUUpRoFUusaBZHQMMvfUwaisZ1fZQoaAZoCWgPQwi77q1IzBlwQJSGlFKUaBVLqGgWR0DDL41JcxCZdX2UKGgGaAloD0MIc2cmGE51cUCUhpRSlGgVS8JoFkdAwy+SBJ7LMnV9lChoBmgJaA9DCFyPwvVoKnNAlIaUUpRoFUuaaBZHQMMvossH0K91fZQoaAZoCWgPQwjfwyXHXb5wQJSGlFKUaBVLnWgWR0DDL69YyO7ydX2UKGgGaAloD0MI9WVppyZtcUCUhpRSlGgVS7JoFkdAwy+1HbRF7XVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 3070,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1789b66a792a07e22fb5ba12c8088c64449647e877ff7754449a0d5fe38054cc
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0f4e02a45a07bb79a4555cf4aab6c62942874a53e051bd0d23f5e91f75732fe
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:beefebc4eed2d4e3feb3bbc69577eaa4aa95be8561096183ee578b9d200ebadc
|
3 |
+
size 193537
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 285.73021263595433, "std_reward": 12.7050687730098, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T12:26:18.067777"}
|