metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- ethos
metrics:
- accuracy
widget:
- text: "This is what happens when you'\x80\x99re a bitch and a cunt. Looks like that guy called it correctly. Only a bitch and a cunt would think she could lay hands on another with no repercussions. Maybe after that seizure she won'\x80\x99t be as much of a bitchy cunt."
- text: >-
What if we send every men to mars to start a new life there! They are
useless here (Of course milk them first to store their juices)
- text: Honestly, go fuck yourself! bitch!
- text: Hindus take my ass please
- text: Im going to choke you with your cross necklace idiotic religious pig
pipeline_tag: text-classification
inference: false
base_model: lighteternal/stsb-xlm-r-greek-transfer
model-index:
- name: SetFit with lighteternal/stsb-xlm-r-greek-transfer
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: ethos
type: ethos
split: test
metrics:
- type: accuracy
value: 0.208
name: Accuracy
SetFit with lighteternal/stsb-xlm-r-greek-transfer
This is a SetFit model trained on the ethos dataset that can be used for Text Classification. This SetFit model uses lighteternal/stsb-xlm-r-greek-transfer as the Sentence Transformer embedding model. A ClassifierChain instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: lighteternal/stsb-xlm-r-greek-transfer
- Classification head: a ClassifierChain instance
- Maximum Sequence Length: 400 tokens
- Training Dataset: ethos
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.208 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("st-karlos-efood/setfit-multilabel-example-classifier-chain")
# Run inference
preds = model("Hindus take my ass please")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 9.9307 | 61 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.2027 | - |
0.0305 | 50 | 0.2092 | - |
0.0609 | 100 | 0.1605 | - |
0.0914 | 150 | 0.1726 | - |
0.1219 | 200 | 0.1322 | - |
0.1523 | 250 | 0.1252 | - |
0.1828 | 300 | 0.1404 | - |
0.2133 | 350 | 0.0927 | - |
0.2438 | 400 | 0.1039 | - |
0.2742 | 450 | 0.0904 | - |
0.3047 | 500 | 0.1194 | - |
0.3352 | 550 | 0.1024 | - |
0.3656 | 600 | 0.151 | - |
0.3961 | 650 | 0.0842 | - |
0.4266 | 700 | 0.1158 | - |
0.4570 | 750 | 0.214 | - |
0.4875 | 800 | 0.1167 | - |
0.5180 | 850 | 0.1174 | - |
0.5484 | 900 | 0.1567 | - |
0.5789 | 950 | 0.0726 | - |
0.6094 | 1000 | 0.0741 | - |
0.6399 | 1050 | 0.0841 | - |
0.6703 | 1100 | 0.0606 | - |
0.7008 | 1150 | 0.1005 | - |
0.7313 | 1200 | 0.1236 | - |
0.7617 | 1250 | 0.141 | - |
0.7922 | 1300 | 0.1611 | - |
0.8227 | 1350 | 0.1068 | - |
0.8531 | 1400 | 0.0542 | - |
0.8836 | 1450 | 0.1635 | - |
0.9141 | 1500 | 0.106 | - |
0.9445 | 1550 | 0.0817 | - |
0.9750 | 1600 | 0.1157 | - |
1.0055 | 1650 | 0.1031 | - |
1.0360 | 1700 | 0.0969 | - |
1.0664 | 1750 | 0.0742 | - |
1.0969 | 1800 | 0.0697 | - |
1.1274 | 1850 | 0.1072 | - |
1.1578 | 1900 | 0.0593 | - |
1.1883 | 1950 | 0.1102 | - |
1.2188 | 2000 | 0.1586 | - |
1.2492 | 2050 | 0.1523 | - |
1.2797 | 2100 | 0.0921 | - |
1.3102 | 2150 | 0.0634 | - |
1.3406 | 2200 | 0.073 | - |
1.3711 | 2250 | 0.1131 | - |
1.4016 | 2300 | 0.0493 | - |
1.4321 | 2350 | 0.106 | - |
1.4625 | 2400 | 0.0585 | - |
1.4930 | 2450 | 0.1058 | - |
1.5235 | 2500 | 0.0892 | - |
1.5539 | 2550 | 0.0649 | - |
1.5844 | 2600 | 0.0481 | - |
1.6149 | 2650 | 0.1359 | - |
1.6453 | 2700 | 0.0734 | - |
1.6758 | 2750 | 0.0762 | - |
1.7063 | 2800 | 0.1082 | - |
1.7367 | 2850 | 0.1274 | - |
1.7672 | 2900 | 0.0724 | - |
1.7977 | 2950 | 0.0842 | - |
1.8282 | 3000 | 0.1558 | - |
1.8586 | 3050 | 0.071 | - |
1.8891 | 3100 | 0.1716 | - |
1.9196 | 3150 | 0.1078 | - |
1.9500 | 3200 | 0.1037 | - |
1.9805 | 3250 | 0.0773 | - |
2.0110 | 3300 | 0.0706 | - |
2.0414 | 3350 | 0.1577 | - |
2.0719 | 3400 | 0.0825 | - |
2.1024 | 3450 | 0.1227 | - |
2.1328 | 3500 | 0.1069 | - |
2.1633 | 3550 | 0.1037 | - |
2.1938 | 3600 | 0.0595 | - |
2.2243 | 3650 | 0.0569 | - |
2.2547 | 3700 | 0.0967 | - |
2.2852 | 3750 | 0.0632 | - |
2.3157 | 3800 | 0.1014 | - |
2.3461 | 3850 | 0.0868 | - |
2.3766 | 3900 | 0.0986 | - |
2.4071 | 3950 | 0.0585 | - |
2.4375 | 4000 | 0.063 | - |
2.4680 | 4050 | 0.1124 | - |
2.4985 | 4100 | 0.0444 | - |
2.5289 | 4150 | 0.1547 | - |
2.5594 | 4200 | 0.1087 | - |
2.5899 | 4250 | 0.0946 | - |
2.6204 | 4300 | 0.0261 | - |
2.6508 | 4350 | 0.0414 | - |
2.6813 | 4400 | 0.0715 | - |
2.7118 | 4450 | 0.0831 | - |
2.7422 | 4500 | 0.0779 | - |
2.7727 | 4550 | 0.1049 | - |
2.8032 | 4600 | 0.1224 | - |
2.8336 | 4650 | 0.0926 | - |
2.8641 | 4700 | 0.0745 | - |
2.8946 | 4750 | 0.0642 | - |
2.9250 | 4800 | 0.0536 | - |
2.9555 | 4850 | 0.1296 | - |
2.9860 | 4900 | 0.0596 | - |
3.0165 | 4950 | 0.0361 | - |
3.0469 | 5000 | 0.0592 | - |
3.0774 | 5050 | 0.0656 | - |
3.1079 | 5100 | 0.0584 | - |
3.1383 | 5150 | 0.0729 | - |
3.1688 | 5200 | 0.1037 | - |
3.1993 | 5250 | 0.0685 | - |
3.2297 | 5300 | 0.0511 | - |
3.2602 | 5350 | 0.0427 | - |
3.2907 | 5400 | 0.1067 | - |
3.3211 | 5450 | 0.0807 | - |
3.3516 | 5500 | 0.0815 | - |
3.3821 | 5550 | 0.1016 | - |
3.4126 | 5600 | 0.1034 | - |
3.4430 | 5650 | 0.1257 | - |
3.4735 | 5700 | 0.0877 | - |
3.5040 | 5750 | 0.0808 | - |
3.5344 | 5800 | 0.0926 | - |
3.5649 | 5850 | 0.0967 | - |
3.5954 | 5900 | 0.0401 | - |
3.6258 | 5950 | 0.0547 | - |
3.6563 | 6000 | 0.0872 | - |
3.6868 | 6050 | 0.0808 | - |
3.7172 | 6100 | 0.1125 | - |
3.7477 | 6150 | 0.1431 | - |
3.7782 | 6200 | 0.1039 | - |
3.8087 | 6250 | 0.061 | - |
3.8391 | 6300 | 0.1022 | - |
3.8696 | 6350 | 0.0394 | - |
3.9001 | 6400 | 0.0892 | - |
3.9305 | 6450 | 0.0535 | - |
3.9610 | 6500 | 0.0793 | - |
3.9915 | 6550 | 0.0462 | - |
4.0219 | 6600 | 0.0686 | - |
4.0524 | 6650 | 0.0506 | - |
4.0829 | 6700 | 0.1012 | - |
4.1133 | 6750 | 0.0852 | - |
4.1438 | 6800 | 0.0729 | - |
4.1743 | 6850 | 0.1007 | - |
4.2048 | 6900 | 0.0431 | - |
4.2352 | 6950 | 0.0683 | - |
4.2657 | 7000 | 0.0712 | - |
4.2962 | 7050 | 0.0732 | - |
4.3266 | 7100 | 0.0374 | - |
4.3571 | 7150 | 0.1015 | - |
4.3876 | 7200 | 0.15 | - |
4.4180 | 7250 | 0.0852 | - |
4.4485 | 7300 | 0.0714 | - |
4.4790 | 7350 | 0.0587 | - |
4.5094 | 7400 | 0.1335 | - |
4.5399 | 7450 | 0.1123 | - |
4.5704 | 7500 | 0.0538 | - |
4.6009 | 7550 | 0.0989 | - |
4.6313 | 7600 | 0.0878 | - |
4.6618 | 7650 | 0.0963 | - |
4.6923 | 7700 | 0.0991 | - |
4.7227 | 7750 | 0.0776 | - |
4.7532 | 7800 | 0.0663 | - |
4.7837 | 7850 | 0.0696 | - |
4.8141 | 7900 | 0.0704 | - |
4.8446 | 7950 | 0.0626 | - |
4.8751 | 8000 | 0.0657 | - |
4.9055 | 8050 | 0.0567 | - |
4.9360 | 8100 | 0.0619 | - |
4.9665 | 8150 | 0.0792 | - |
4.9970 | 8200 | 0.0671 | - |
5.0274 | 8250 | 0.1068 | - |
5.0579 | 8300 | 0.1111 | - |
5.0884 | 8350 | 0.0968 | - |
5.1188 | 8400 | 0.0577 | - |
5.1493 | 8450 | 0.0934 | - |
5.1798 | 8500 | 0.0854 | - |
5.2102 | 8550 | 0.0587 | - |
5.2407 | 8600 | 0.048 | - |
5.2712 | 8650 | 0.0829 | - |
5.3016 | 8700 | 0.0985 | - |
5.3321 | 8750 | 0.107 | - |
5.3626 | 8800 | 0.0662 | - |
5.3931 | 8850 | 0.0799 | - |
5.4235 | 8900 | 0.0948 | - |
5.4540 | 8950 | 0.087 | - |
5.4845 | 9000 | 0.0429 | - |
5.5149 | 9050 | 0.0699 | - |
5.5454 | 9100 | 0.0911 | - |
5.5759 | 9150 | 0.1268 | - |
5.6063 | 9200 | 0.1042 | - |
5.6368 | 9250 | 0.0642 | - |
5.6673 | 9300 | 0.0736 | - |
5.6977 | 9350 | 0.0329 | - |
5.7282 | 9400 | 0.126 | - |
5.7587 | 9450 | 0.0991 | - |
5.7892 | 9500 | 0.1038 | - |
5.8196 | 9550 | 0.0842 | - |
5.8501 | 9600 | 0.0623 | - |
5.8806 | 9650 | 0.0642 | - |
5.9110 | 9700 | 0.0902 | - |
5.9415 | 9750 | 0.0994 | - |
5.9720 | 9800 | 0.0685 | - |
6.0024 | 9850 | 0.0573 | - |
6.0329 | 9900 | 0.0537 | - |
6.0634 | 9950 | 0.0478 | - |
6.0938 | 10000 | 0.0513 | - |
6.1243 | 10050 | 0.0529 | - |
6.1548 | 10100 | 0.095 | - |
6.1853 | 10150 | 0.0578 | - |
6.2157 | 10200 | 0.0918 | - |
6.2462 | 10250 | 0.0594 | - |
6.2767 | 10300 | 0.1015 | - |
6.3071 | 10350 | 0.036 | - |
6.3376 | 10400 | 0.0524 | - |
6.3681 | 10450 | 0.0927 | - |
6.3985 | 10500 | 0.0934 | - |
6.4290 | 10550 | 0.0788 | - |
6.4595 | 10600 | 0.0842 | - |
6.4899 | 10650 | 0.0703 | - |
6.5204 | 10700 | 0.0684 | - |
6.5509 | 10750 | 0.0759 | - |
6.5814 | 10800 | 0.0271 | - |
6.6118 | 10850 | 0.0391 | - |
6.6423 | 10900 | 0.0895 | - |
6.6728 | 10950 | 0.054 | - |
6.7032 | 11000 | 0.0987 | - |
6.7337 | 11050 | 0.0577 | - |
6.7642 | 11100 | 0.0822 | - |
6.7946 | 11150 | 0.0986 | - |
6.8251 | 11200 | 0.0423 | - |
6.8556 | 11250 | 0.0672 | - |
6.8860 | 11300 | 0.0747 | - |
6.9165 | 11350 | 0.0873 | - |
6.9470 | 11400 | 0.106 | - |
6.9775 | 11450 | 0.0975 | - |
7.0079 | 11500 | 0.0957 | - |
7.0384 | 11550 | 0.0487 | - |
7.0689 | 11600 | 0.0698 | - |
7.0993 | 11650 | 0.0317 | - |
7.1298 | 11700 | 0.0732 | - |
7.1603 | 11750 | 0.1114 | - |
7.1907 | 11800 | 0.0689 | - |
7.2212 | 11850 | 0.1211 | - |
7.2517 | 11900 | 0.0753 | - |
7.2821 | 11950 | 0.062 | - |
7.3126 | 12000 | 0.075 | - |
7.3431 | 12050 | 0.0494 | - |
7.3736 | 12100 | 0.0724 | - |
7.4040 | 12150 | 0.0605 | - |
7.4345 | 12200 | 0.0508 | - |
7.4650 | 12250 | 0.0828 | - |
7.4954 | 12300 | 0.0512 | - |
7.5259 | 12350 | 0.1291 | - |
7.5564 | 12400 | 0.0459 | - |
7.5868 | 12450 | 0.0869 | - |
7.6173 | 12500 | 0.0379 | - |
7.6478 | 12550 | 0.1878 | - |
7.6782 | 12600 | 0.0824 | - |
7.7087 | 12650 | 0.0945 | - |
7.7392 | 12700 | 0.0763 | - |
7.7697 | 12750 | 0.0602 | - |
7.8001 | 12800 | 0.0342 | - |
7.8306 | 12850 | 0.0746 | - |
7.8611 | 12900 | 0.065 | - |
7.8915 | 12950 | 0.0749 | - |
7.9220 | 13000 | 0.0618 | - |
7.9525 | 13050 | 0.0567 | - |
7.9829 | 13100 | 0.069 | - |
8.0134 | 13150 | 0.0487 | - |
8.0439 | 13200 | 0.0578 | - |
8.0743 | 13250 | 0.0876 | - |
8.1048 | 13300 | 0.0942 | - |
8.1353 | 13350 | 0.0774 | - |
8.1658 | 13400 | 0.0557 | - |
8.1962 | 13450 | 0.0872 | - |
8.2267 | 13500 | 0.0652 | - |
8.2572 | 13550 | 0.088 | - |
8.2876 | 13600 | 0.05 | - |
8.3181 | 13650 | 0.0572 | - |
8.3486 | 13700 | 0.053 | - |
8.3790 | 13750 | 0.0745 | - |
8.4095 | 13800 | 0.1119 | - |
8.4400 | 13850 | 0.0909 | - |
8.4704 | 13900 | 0.0374 | - |
8.5009 | 13950 | 0.0515 | - |
8.5314 | 14000 | 0.0827 | - |
8.5619 | 14050 | 0.0925 | - |
8.5923 | 14100 | 0.0793 | - |
8.6228 | 14150 | 0.1123 | - |
8.6533 | 14200 | 0.0387 | - |
8.6837 | 14250 | 0.0898 | - |
8.7142 | 14300 | 0.0627 | - |
8.7447 | 14350 | 0.0863 | - |
8.7751 | 14400 | 0.1257 | - |
8.8056 | 14450 | 0.0553 | - |
8.8361 | 14500 | 0.0664 | - |
8.8665 | 14550 | 0.0641 | - |
8.8970 | 14600 | 0.0577 | - |
8.9275 | 14650 | 0.0672 | - |
8.9580 | 14700 | 0.0776 | - |
8.9884 | 14750 | 0.0951 | - |
9.0189 | 14800 | 0.0721 | - |
9.0494 | 14850 | 0.0609 | - |
9.0798 | 14900 | 0.0821 | - |
9.1103 | 14950 | 0.0477 | - |
9.1408 | 15000 | 0.0974 | - |
9.1712 | 15050 | 0.0534 | - |
9.2017 | 15100 | 0.0673 | - |
9.2322 | 15150 | 0.0549 | - |
9.2626 | 15200 | 0.0833 | - |
9.2931 | 15250 | 0.0957 | - |
9.3236 | 15300 | 0.0601 | - |
9.3541 | 15350 | 0.0702 | - |
9.3845 | 15400 | 0.0852 | - |
9.4150 | 15450 | 0.0576 | - |
9.4455 | 15500 | 0.1006 | - |
9.4759 | 15550 | 0.0697 | - |
9.5064 | 15600 | 0.0778 | - |
9.5369 | 15650 | 0.0778 | - |
9.5673 | 15700 | 0.0844 | - |
9.5978 | 15750 | 0.0724 | - |
9.6283 | 15800 | 0.0988 | - |
9.6587 | 15850 | 0.0699 | - |
9.6892 | 15900 | 0.0772 | - |
9.7197 | 15950 | 0.0757 | - |
9.7502 | 16000 | 0.0671 | - |
9.7806 | 16050 | 0.1057 | - |
9.8111 | 16100 | 0.075 | - |
9.8416 | 16150 | 0.0475 | - |
9.8720 | 16200 | 0.0572 | - |
9.9025 | 16250 | 0.1176 | - |
9.9330 | 16300 | 0.0552 | - |
9.9634 | 16350 | 0.1032 | - |
9.9939 | 16400 | 0.0935 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}